Bernouli Distribution(中文翻译称伯努利分布)
该分布研究的是一种特殊的实验,这种实验只有两个结果要么成功要么失败,且每次实验是独立的并每次实验都有固定的成功概率p。
概率公式可以表示为 , x只能为0或者1,即要么成功要么失败
根据数学期望的性质
由于这里x只有两个取值所以该分布的数学期望为
方差则可以由方差公式来计算
方差公式:
该分布显然, 因此可以得到
,
所以方差
最后我们来推导该分布的最大似然估计
是这样定义的,假设我们做了N次实验,得到的结果集合为
,我们想找到一个
,使得该集合的可能性最大,由于各项实验之间是独立的,可以运用乘法原理,那么
由于0<p<1,要使上面的式子最大,等价于使加上ln底的式子值最大,我们加上ln的底就可以将连乘转换为加和的形式,推导公式如下
再由最大似然方程可知,要选取p使该式子最大,则只要使该式对p进行求导的值为0,即
,
化简后我们最终求得
, 这个就是伯努利分布的最大似然估计