概率论复习笔记一——伯努利实验及相关的概率分布

一、伯努利概型

在许多问题中,我们对试验感兴趣的是试验中某事件 A A A是否发生。在这类问题中,我们可以把事件域取为 F = { ∅ , A , A ˉ , Ω } \mathcal F=\{\emptyset, A, \bar A, \Omega\} F={,A,Aˉ,Ω},这种只有两个可能结果的试验称为伯努利试验


在伯努利试验中,首先要给出下面概率: P ( A ) = p , P ( A ˉ ) = q (1) P(A)=p, P(\bar A)=q\tag1 P(A)=p,P(Aˉ)=q(1)
其中, p ≥ 0 , q ≥ 0 , p + q = 1 p\ge0, q\ge0, p+q=1 p0,q0,p+q=1


现在考虑重复进行 n n n次独立的伯努利试验,这里的重复是指每次试验中事件 A A A出现的概率都不变,这样的试验称为 n n n重伯努利试验,记作 E n E^n En。它有以下4个约定:

  1. 每次试验至多出现两个可能结果之一: A A A A ˉ \bar A Aˉ
  2. A A A在每次试验中出现的概率 p p p保持不变
  3. 各次试验相互独立
  4. 共进行 n n n次试验



n n n重伯努利试验 E n E^n En的样本点形如: ( A 1 ^ , A 2 ^ , ⋯   , A n ^ ) (\hat {A_1}, \hat {A_2}, \cdots, \hat {A_n}) (A1^,A2^,,An^),其中 A i ^ \hat {A_i} Ai^ A i A_i Ai A i ˉ \bar{A_i} Aiˉ,分别表示第 i i i次试验中出现 A A A A ˉ \bar A Aˉ,显然这种样本点共有 2 n 2^n 2n个,这是一个有限的样本空间。假设 n n n次试验中出现 l l l次事件 A A A,那么会有 n − l n-l nl次事件 A ˉ \bar A Aˉ,从而可以得到相应的概率为: P ( A 1 ^ , A 2 ^ , ⋯   , A n ^ ) = p l q n − l (2) P(\hat {A_1}, \hat {A_2}, \cdots, \hat {A_n})=p^lq^{n-l}\tag2 P(A1^,A2^,,An^)=plqnl(2)


以伯努利试验为模型探讨机票超售问题。每个订座旅客当作一次试验,则他不登机记作事件 A A A,登机记作事件 A ˉ \bar A Aˉ P ( A ) P(A) P(A)可以由过去统计资料得出。主要的难点在于能否把旅客是否登机看作是独立的,显然对于购买团体票的旅客作此假定是不适合的。此外,大型的交通堵塞等偶然事件也会使这个假定偏离,不过在一般场合作此假定还是合理的。那么全体订座旅客数 n n n作为试验总数,这便构成伯努利概型

二、伯努利概型中的一些分布

2.1 伯努利分布

若只进行一次试验,或者事件 A A A出现,或者不出现,其概率由 ( 1 ) (1) (1)式给出,称为伯努利分布

2.2 二项分布

假设进行了 n n n重伯努利试验,以 b ( k ; n , p ) b(k;n,p) b(k;n,p)记作事件 A A A出现 k k k次的概率,很容易可以计算得到: b ( k ; n , p ) = C n k p k q n − k , k = 0 , 1 , 2 ⋯   , n (3) b(k;n,p)=C_n^kp^kq^{n-k}, k=0,1,2\cdots,n\tag3 b(k;n,p)=Cnkpkqnk,k=0,1,2,n(3)
注意到 b ( k ; n , p ) , k = 0 , 1 , 2 ⋯   , n b(k;n,p), k=0,1,2\cdots,n b(k;n,p),k=0,1,2,n是二项式 ( q + p s ) n (q+ps)^n (q+ps)n展开式中 s k s^k sk项的系数,所以 ( 3 ) (3) (3)被称为二项分布

2.3 几何分布

假设进行了 n n n重伯努利试验,以 g ( k ; p ) g(k;p) g(k;p)记作事件 A A A首次出现在第 k k k次试验的概率,那么前 k − 1 k-1 k1次都出现事件 A ˉ \bar A Aˉ,所以 g ( k ; p ) = q k − 1 p , k = 1 , 2 , ⋯   , n (4) g(k;p)=q^{k-1}p, k=1, 2, \cdots, n\tag4 g(k;p)=qk1p,k=1,2,,n(4)
g ( k ; p ) g(k;p) g(k;p)是几何级数的一般项,所以 ( 4 ) (4) (4)称为几何分布

2.3 帕斯卡分布

假设进行了 n n n重伯努利试验,以 f ( k ; r , p ) f(k;r,p) f(k;r,p)记作第 r r r次成功出现在第 k k k次试验,则必有 k ≥ r k\ge r kr,很容易计算得: f ( k ; r , p ) = C k − 1 r − 1 p r − 1 q k − r p = C k − 1 r − 1 p r q k − r (5) f(k;r,p)=C_{k-1}^{r-1}p^{r-1}q^{k-r}p=C_{k-1}^{r-1}p^{r}q^{k-r}\tag 5 f(k;r,p)=Ck1r1pr1qkrp=Ck1r1prqkr(5)
f ( k ; r , p ) f(k;r,p) f(k;r,p)成为帕斯卡分布,特别当 r = 1 r=1 r=1时,我们得到几何分布。

2.4 多项分布

二项分布可以很容易的推广到 n n n次重复独立试验且每次试验可能有若干个结果的情形。把每次试验的可能结果记为 A 1 , A 2 , ⋯   , A r A_1, A_2, \cdots, A_r A1,A2,,Ar P ( A i ) = p i , i = 1 , 2 , ⋯   , r P(A_i)=p_i, i=1, 2, \cdots, r P(Ai)=pi,i=1,2,,r,且 p 1 + p 2 + ⋯ + p r = 1 , p i ≥ 0 p_1+p_2+\cdots+p_r=1, p_i\ge0 p1+p2++pr=1,pi0,当 r = 2 r=2 r=2时,就是伯努利试验。


在这种推广的伯努利试验中,我们不难得出在 n n n次试验中, A 1 A_1 A1出现 k 1 k_1 k1次, A 2 A_2 A2出现 k 2 k_2 k2次, A r A_r Ar出现 k r k_r kr次的概率为: n ! k 1 ! k 2 ! ⋯ k r ! p 1 k 1 p 2 k 2 ⋯ p r k r (6) \frac{n!}{k_1! k_2!\cdots k_r!}p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}\tag6 k1!k2!kr!n!p1k1p2k2prkr(6)
( 6 ) (6) (6)式称为多项分布

2.5 泊松分布

在伯努利试验中, n n n很大, p p p很小,但 λ = n p \lambda=np λ=np大小适中。在独立试验中,以 p n p_n pn代表事件 A A A在试验中出现的概率,它与试验总数 n n n有关,如果 n p n ⟶ λ np_n\longrightarrow\lambda npnλ,则当 n ⟶ ∞ n\longrightarrow \infty n时, b ( k ; n , p ) ⟶ λ k k ! e − λ (7) b(k;n,p)\longrightarrow\frac{\lambda^k}{k!}e^{-\lambda}\tag7 b(k;n,p)k!λkeλ(7)

证明
λ n = n p n \lambda_n=np_n λn=npn,则 b ( k ; n , p n ) = C n k p n k ( 1 − p n ) n − k = n ( n − 1 ) ⋯ ( n − k + 1 ) k ! ( λ n n ) k ( 1 − λ n n ) n − k = λ n k k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) ( 1 − λ n ) n − k b(k;n,p_n)=C_n^kp_n^k(1-p_n)^{n-k}=\frac{n(n-1)\cdots(n-k+1)}{k!}(\frac{\lambda_n}{n})^k(1-\frac{\lambda_n}{n})^{n-k}=\frac{\lambda_n^k}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{k-1}{n})(1-\frac{\lambda}{n})^{n-k} b(k;n,pn)=Cnkpnk(1pn)nk=k!n(n1)(nk+1)(nλn)k(1nλn)nk=k!λnk(1n1)(1n2)(1nk1)(1nλ)nk

而对于固定的 k k k n ⟶ ∞ n\longrightarrow \infty n时, lim ⁡ n ⟶ ∞ λ n k = λ k \lim\limits_{n\longrightarrow \infty}\lambda_n^k=\lambda^k nlimλnk=λk lim ⁡ n ⟶ ∞ ( 1 − λ n ) n − k = e − λ \lim\limits_{n\longrightarrow \infty}(1-\frac{\lambda}{n})^{n-k}=e^{-\lambda} nlim(1nλ)nk=eλ lim ⁡ n ⟶ ∞ ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) = 1 \lim\limits_{n\longrightarrow \infty}(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1-\frac{k-1}{n})=1 nlim(1n1)(1n2)(1nk1)=1

所以有 b ( k ; n , p ) ⟶ λ k k ! e − λ b(k;n,p)\longrightarrow\frac{\lambda^k}{k!}e^{-\lambda} b(k;n,p)k!λkeλ

p ( k ; λ ) = λ k k ! e − λ , k = 0 , 1 , 2 ⋯ (8) p(k;\lambda)=\frac{\lambda^k}{k!}e^{-\lambda}, k=0,1,2\cdots\tag8 p(k;λ)=k!λkeλ,k=0,1,2(8)
( 8 ) (8) (8)式称为泊松分布 λ \lambda λ称为它的参数。
注意到 ∑ k = 0 ∞ p ( k ; λ ) = 1 \sum\limits_{k=0}^\infty p(k;\lambda)=1 k=0p(k;λ)=1

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论中,先验概率是指根据以往经验和分析得到的概率,在"由因求果"问题中作为因出现。先验概率可以通过全概率公式等方法计算得到。而后验概率是指在已有结果的情况下,求引起这个结果的因素的可能性,即由果求因。后验概率可以通过贝叶斯定理计算得到。 关于保研复习资料,根据引用提供的资料,它是一份自己整理的保研概率论面试保研资料。这份资料可能包括了保研概率论相关知识、面试常见问题和答案等内容。如果你对概率论的保研复习感兴趣,这份资料可能会对你有所帮助。但请注意,复习资料只是辅助工具,最重要的还是理解概率论的基本概念和原理,并进行大量的练习和实践。希望你能够努力学习,加油!<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [概率论保研复习.pdf](https://download.csdn.net/download/Mikesuper_blog/12722360)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [计算机保研复习](https://blog.csdn.net/dlz_yhn/article/details/126806194)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [计算机保研专业课必备之数学](https://blog.csdn.net/qq_54117842/article/details/127927858)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值