代数运算与代数系统

文章详细介绍了代数运算的一些基本概念,包括集合的幂集、运算的封闭性、结合律、交换律、分配律以及单位元、零元的概念。此外,还讨论了逆元、可约性和代数系统的定义。文章通过定理和证明阐述了这些概念之间的关系,如封闭性的保持、结合律的应用以及可逆元的唯一性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

符号

I \mathbb{I} I表示整数
I + \mathbb{I}_+ I+表示正整数
ρ ( A ) \rho\left(A\right) ρ(A):设 A A A是集合,则称 { x ∣ x ⊆ A } \left\{x|x\subseteq A\right\} {xxA} A A A的幂集

代数运算

A A A为非空集合, n ∈ I + n\in \mathbb{I}_+ nI+,函数 f : A n → A f: A^n \to A f:AnA称为 A A A上的一个 n n n元运算, n n n称为该运算的阶
特别地, A A A中的每个元素称为 A A A上的一个0元运算

性质

封闭

∘ \circ 是集合 A A A上的 n n n元运算, S S S A A A的非空子集,若 ∀ a 1 , a 2 , ⋯   , a n ∈ S \forall a_1,a_2,\cdots, a_n \in S a1,a2,,anS ∘ ( a 1 , a 2 , ⋯   , a n ) ∈ S \circ\left(a_1,a_2,\cdots, a_n\right)\in S (a1,a2,,an)S,则称 S S S关于运算 ∘ \circ 是封闭的

定理

∘ \circ 是集合 A A A上的 n n n元运算, ζ \zeta ζ ρ ( A ) \rho\left(A\right) ρ(A)的非空子集,若 ∀ S ∈ ζ \forall S\in \zeta Sζ, S S S关于 ∘ \circ 是封闭的,
∩ ζ \cap\zeta ζ关于 ∘ \circ 也是封闭的,即广义交保持封闭性

交换律

∗ * 是集合 A A A上的二元运算,若 a , b ∈ A a,b\in A a,bA,有 a ∗ b = b ∗ a a*b = b * a ab=ba,则称 ∗ * 是可交换的,或 ∗ * 满足交换律

结合律

∗ * 是集合 A A A上的二元运算,若 ∀ a , b , c ∈ A \forall a,b,c \in A a,b,cA,有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) \left(a*b\right)*c = a*\left(b*c\right) (ab)c=a(bc),则称 ∗ * 是可结合的,或称 ∗ * 满足结合律

分配律

∗ * ∘ \circ 是集合 A A A上的二元运算
(1)若 ∀ a , b , c ∈ A \forall a,b,c\in A a,b,cA,有 a ∗ ( b ∘ c ) = ( a ∗ b ) ∘ ( a ∗ c ) a * \left(b\circ c\right) = \left(a * b\right) \circ\left(a*c\right) a(bc)=(ab)(ac),则称 ∗ * 关于 ∘ \circ 是左可分配的
(2)若 ∀ a , b , c ∈ A \forall a,b,c\in A a,b,cA,有 ( b ∘ c ) ∗ a = ( b ∗ a ) ∘ ( c ∗ a ) \left(b\circ c\right) * a = \left(b * a\right) \circ\left(c*a\right) (bc)a=(ba)(ca),则称 ∗ * 关于 ∘ \circ 是右可分配的
(3)若 ∗ * 关于 ∘ \circ 即使做客分配的,又是右可分配的,则称 ∗ * 关于 ∘ \circ 是可分配的,或称 ∗ * 关于 ∘ \circ 满足分配律

定理

∗ * 是集合 A A A上可结合的二元运算,则 ∀ n ∈ I + \forall n \in \mathbb{I}_+ nI+ ∀ a 1 , a 2 , ⋯   , a n ∈ A \forall a_1,a_2,\cdots, a_n\in A a1,a2,,anA,表达式 a 1 ∗ a 2 ∗ ⋯ ∗ a n a_1 * a_2*\cdots * a_n a1a2an经任意加括号而计算出的结果不变

证明:

∏ i = 1 n a i = ( ⋯ ( ( a 1 ∗ a 2 ) ∗ a 3 ) ⋯ ∗ a n − 1 ) ∗ a n \prod_{i=1}^{n}a_i = \left(\cdots\left(\left(a_1 * a_2\right) * a_3\right)\cdots * a_{n-1}\right)*a_n i=1nai=(((a1a2)a3)an1)an

n = 1 , 2 n=1,2 n=1,2时显然成立
假设 k < n k<n k<n时成立
k = n k=n k=n
a 1 ∗ a 2 ∗ ⋯ ∗ a n a_1*a_2*\cdots * a_n a1a2an任意加括号所得结果中最后一次计算时 α ∗ β \alpha * \beta αβ
其中 α \alpha α表示 m m m个元 a 1 , a 2 , ⋯   , a m a_1,a_2,\cdots,a_m a1,a2,,am的计算结果
β \beta β表示 n − m n-m nm个元 a 1 , a 2 , ⋯   , a n − m a_1,a_2,\cdots,a_{n-m} a1,a2,,anm的计算结果
1 ≤ m < n 1\le m < n 1m<n
α = ∏ i = 1 m a i , β = ∏ j = m + 1 n a j \alpha = \prod_{i=1}^{m}a_i,\quad \beta = \prod_{j=m+1}^{n}a_j α=i=1mai,β=j=m+1naj
m = n − 1 m=n-1 m=n1,则
α ∗ β = ∏ i = 1 n a i \alpha * \beta = \prod_{i=1}^{n}a_i αβ=i=1nai
m < n − 1 m < n-1 m<n1,则
α ∗ β = ( ∏ i = 1 m a i ) ∗ ( ∏ j = m + 1 n a j ) = ( ∏ i = 1 m a i ) ∗ ( ( ∏ j = m + 1 n − 1 a j ) ∗ a n ) = ( ( ∏ i = 1 m a i ) ∗ ( ∏ j = m + 1 n − 1 a j ) ) ∗ a n = ( ∏ i = 1 n − 1 a i ) ∗ a n = ∏ i = 1 n a i \begin{aligned} \alpha * \beta &=\left(\prod_{i=1}^{m}a_i\right) * \left(\prod_{j=m+1}^{n}a_j\right)\\ &=\left(\prod_{i=1}^{m}a_i\right) * \left(\left(\prod_{j=m+1}^{n-1}a_j\right)*a_n\right)\\ &=\left(\left(\prod_{i=1}^{m}a_i\right) * \left(\prod_{j=m+1}^{n-1}a_j\right)\right) * a_n\\ &=\left(\prod_{i=1}^{n-1}a_i\right) * a_n\\ &=\prod_{i=1}^{n}a_i \end{aligned} αβ=(i=1mai)(j=m+1naj)=(i=1mai)((j=m+1n1aj)an)=((i=1mai)(j=m+1n1aj))an=(i=1n1ai)an=i=1nai
因此 ∀ n ∈ I + \forall n\in \mathbb{I}_+ nI+,定理成立

单位元

∗ * 时集合 A A A上的二元运算
(1)若 ∃ e l ∈ A \exists e_l \in A elA,使得 ∀ a ∈ A \forall a \in A aA,有 e l ∗ a = a e_l * a = a ela=a,则称 e l e_l el为关于 ∗ * 的左单位元,也称左幺元
(2)若 ∃ e r ∈ A \exists e_r \in A erA,使得 ∀ a ∈ A \forall a \in A aA,有 a ∗ e r = a a * e_r = a aer=a,则称 e r e_r er为关于 ∗ * 的右单位元,也称右幺元
(3)若 ∃ e ∈ A \exists e \in A eA,使得 ∀ a ∈ A \forall a \in A aA,有 e ∗ a = a ∗ e = a e * a = a * e = a ea=ae=a,则称 e e e为关于 ∗ * 的单位元,也称幺元

定理

∗ * 使集合 A A A上的二元运算, e l e_l el e r e_r er分别使关于 ∗ * 的左单位元和右单位元,则 e l = e r e_l=e_r el=er,且它是关于 ∗ * 的唯一单位元

证明:
e l = e l ∗ e r = e r e_l = e_l * e_r = e_r el=eler=er
e = e l = e r e= e_l =e_r e=el=er,设 e ′ e^{\prime} e也是单位元
e ′ = e ′ ∗ e = e e^{\prime} = e^{\prime} * e = e e=ee=e

零元

∗ * 时集合 A A A上的二元运算
(1)若 ∃ 0 l ∈ A \exists 0_l \in A 0lA,使得 ∀ a ∈ A \forall a \in A aA,有 0 l ∗ a = 0 l 0_l * a = 0_l 0la=0l,则称 0 l 0_l 0l为关于 ∗ * 的左零元
(2)若 ∃ 0 r ∈ A \exists 0_r \in A 0rA,使得 ∀ a ∈ A \forall a \in A aA,有 a ∗ 0 r = 0 r a * 0_r = 0_r a0r=0r,则称 0 r 0_r 0r为关于 ∗ * 的右零元
(3)若 ∃ 0 ∈ A \exists 0 \in A ∃0A,使得 ∀ a ∈ A \forall a \in A aA,有 0 ∗ a = a ∗ 0 = 0 0 * a = a * 0 = 0 0a=a0=0,则称 0 0 0为关于 ∗ * 的零元

定理

∗ * 使集合 A A A上的二元运算, 0 l 0_l 0l 0 r 0_r 0r分别使关于 ∗ * 的左零元和右零元,则 0 l = 0 r 0_l=0_r 0l=0r,且它是关于 ∗ * 的唯一零元

逆元

∗ * 时集合 A A A上的二元运算, e e e是关于 ∗ * 的单位元, a ∈ A a\in A aA
(1)若 ∃ a l ∈ A \exists a_l \in A alA,使得 a l ∗ a = e a_l * a = e ala=e,则称 a a a关于 ∗ * 是左可逆的,并称 a l a_l al a a a的关于 ∗ * 的左逆元
(2)若 ∃ a r ∈ A \exists a_r \in A arA,使得 a ∗ a r = e a * a_r = e aar=e,则称 a a a关于 ∗ * 是右可逆的,并称 a r a_r ar a a a的关于 ∗ * 的右逆元
(3)若 ∃ a ′ ∈ A \exists a^{\prime} \in A aA,使得 a ′ ∗ a = a ∗ a ′ = e a^{\prime}* a= a * a^{\prime} = e aa=aa=e,则称 a a a关于 ∗ * 是可逆的,并称 a ′ a^{\prime} a a a a的关于 ∗ * 的逆元

定理

∗ * 是集合 A A A上可结合的二元运算, e e e是关于 ∗ * 的单位元, a l a_l al a r a_r ar分别是关于 a ∈ A a\in A aA的左逆元和右逆元,则 a l = a r a_l = a_r al=ar,且它是 a a a的唯一逆元

证明:
a l = a l ∗ e = a l ∗ ( a ∗ a r ) = ( a l ∗ a ) ∗ a r = e ∗ a r = a r a_l = a_l * e = a_l * \left(a * a _r\right) = \left(a_l * a\right) * a_r = e * a_r = a_r al=ale=al(aar)=(ala)ar=ear=ar

a ′ = a l = a r a^{\prime} = a_l =a_r a=al=ar a a a的一个逆元,设 a ′ ′ a^{\prime \prime} a′′也是 a a a的一个逆元
a ′ = a ′ ∗ e = a ′ ∗ ( a ∗ a ′ ′ ) = ( a ′ ∗ a ) ∗ a ′ ′ = e ∗ a ′ ′ = a ′ ′ a^{\prime} = a^{\prime}* e =a^{\prime} * \left(a * a^{\prime \prime}\right) = \left(a^{\prime} * a\right) * a^{\prime \prime} = e * a^{\prime \prime} = a^{\prime \prime} a=ae=a(aa′′)=(aa)a′′=ea′′=a′′

可约

∗ * 时集合 A A A上的二元运算, a ∈ A a\in A aA
(1)若 ∀ x , y ∈ A \forall x, y \in A x,yA a ∗ x = a ∗ y ⇒ x = y a * x = a * y\Rightarrow x = y ax=ayx=y,则称 a a a关于 ∗ * 是左可约的
(2)若 ∀ x , y ∈ A \forall x, y \in A x,yA x ∗ a = y ∗ a ⇒ x = y x * a = y * a\Rightarrow x = y xa=yax=y,则称 a a a关于 ∗ * 是右可约的
(3)若 a a a既是左可约的,又是右可约的,则称 a a a关于 ∗ * 是可约的

∗ * 是集合 A A A上的二元运算,若 ∀ a ∈ A \forall a \in A aA a a a关于 ∗ * 是可约的,则称 ∗ * 满足消去律

定理

∗ * 时集合 A A A上的二元可结合运算, a ∈ A a\in A aA,若 a a a关于 ∗ * 是可逆的,则 a a a关于 ∗ * 是可约的

证明:
∀ x , y ∈ A \forall x,y \in A x,yA,若 a ∗ x = a ∗ y a * x = a *y ax=ay,则 a − 1 ∗ ( a ∗ x ) = a − 1 ∗ ( a ∗ y ) a^{-1} * \left(a * x\right) = a^{-1} * \left(a * y\right) a1(ax)=a1(ay),由结合律 x = y x = y x=y,故 a a a左可约
右可约同理,因此 a a a是可约的

代数系统

S S S为非空集合, ∗ 1 , ∗ 2 , ⋯   , ∗ n *_1, *_2,\cdots, *_n 1,2,,n S S S上的代数运算,则称 < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > \left<S, *_1, *_2,\cdots,*_n\right> S,1,2,,n为一个代数系统或代数结构,并称 S S S为该代数系统的定义域
S S S为有限集,则称 < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > \left<S, *_1, *_2,\cdots,*_n\right> S,1,2,,n为有限代数系统,并称 ∣ S ∣ \left|S\right| S为该代数系统的阶

< S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > \left<S, *_1, *_2,\cdots,*_n\right> S,1,2,,n为代数系统, T T T S S S的非空子集,
T T T关于每个 ∗ i *_i i都封闭,则称代数系统 < T , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > \left<T, *_1^{\prime}, *_2^{\prime},\cdots,*_n^{\prime}\right> T,1,2,,n < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > \left<S, *_1, *_2,\cdots,*_n\right> S,1,2,,n的子代数,其中 ∗ i ′ *_i^{\prime} i ∗ i *_i i T T T上的限制,为了简便起见, < T , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > \left<T, *_1^{\prime}, *_2^{\prime},\cdots,*_n^{\prime}\right> T,1,2,,n就记作 < T , ∗ 1 , ∗ 2 , ⋯   , ∗ n > \left<T, *_1, *_2,\cdots,*_n\right> T,1,2,,n

课后习题

2.设 ∗ * 是集合 A A A上的二元运算, e e e 0 0 0分别是关于 ∗ * 的单位元和零元,试证明:若 ∣ A ∣ > 1 \left|A\right|>1 A>1,则 e = 0 e=0 e=0
证明:
∀ x ∈ A \forall x \in A xA
x = e ∗ x = 0 ∗ x = 0 x = e * x = 0 * x = 0 x=ex=0x=0
进而KaTeX parse error: Expected '}', got '\right' at position 10: A=\left{0\̲r̲i̲g̲h̲t̲\}
矛盾

4.整数集 I \mathbb{I} I上的二元运算 ∗ * 定义为: ∀ x , y ∈ I , x ∗ y = x + y − x y \forall x,y\in \mathbb{I}, x * y = x+ y - xy x,yI,xy=x+yxy
试证明: ∗ * 是可交换的和可结合的;求出其单位元,并指出每个可逆元的逆元

证明:
显然 ∗ * 是可交换的和可结合

x ∗ y = x ⇒ y = 0 x*y=x\Rightarrow y=0 xy=xy=0
因此单位元为 0 0 0
x ∗ y = x + y − x y = 0 ⇒ y = x x − 1 x * y=x+y-xy=0\Rightarrow y=\frac{x}{x-1} xy=x+yxy=0y=x1x
因为 y ∈ I y\in\mathbb{I} yI,并且 g c d ( x , x − 1 ) = 1 gcd\left(x, x-1\right) = 1 gcd(x,x1)=1
因此 x = 2 , y = 1 ; x = 0 , y = 0 x=2, y=1; x=0, y=0 x=2,y=1;x=0,y=0

2 2 2的逆元为 1 1 1
1 1 1的逆元为 2 2 2
0 0 0的逆元为 0 0 0
其余元素不可逆

7.由下述运算表所定义的二元运算 ∗ * 是否为科狡滑你得?是否有单位元?
对于有单位元的运算,哪些元素是可逆的?并对可逆元给出它们的逆元
(1)

*abcd
aabcd
bbcda
ccdab
ddabc

(2)

*abcd
aaaaa
babcb
cdcac
dddcd

解:
(1)可交换
a a a是单位元
a a a的逆元为 a a a
b b b的逆元为 d d d
c c c的逆元为 c c c
d d d的逆元为 d d d

(2)不可交换
b b b是单位元
b b b的单位元是 b b b

8.设 A A A有限集合,且 ∣ A ∣ = n \left|A\right|=n A=n, A A A上的二元运算有多少个,其中有多少个运算是可交换的?有多少个运算具有单位元

解:
二元运算有 n n 2 n^{n^2} nn2
可交换 n 1 + 2 + . . . n = n n ( n + 1 ) 2 n^{1+2+...n}=n^{\frac{n\left(n+1\right)}{2}} n1+2+...n=n2n(n+1)(对称矩阵)
有单位元: n ∗ n ( n − 1 ) 2 = n n 2 − 2 n + 2 n * n^{\left(n-1\right)^2}=n^{n^2 -2n + 2} nn(n1)2=nn22n+2
(因为单位元,所以一行一列已经确定,然后单位元有 n n n种选法)

9设 ∗ * 是集合 A A A上可结合的二元运算,且 ∀ a , b ∈ A \forall a,b\in A a,bA,若 a ∗ b = b ∗ a a*b=b*a ab=ba,则 a ∗ b a*b ab
试证明:
(1) ∀ a ∈ A , a ∗ a = a \forall a \in A, a* a=a aA,aa=a,即 a a a是幂等元
(2) ∀ a , b ∈ A , a ∗ b ∗ a = a \forall a,b\in A, a*b*a=a a,bA,aba=a
(3) ∀ a , b , c ∈ A , a ∗ b ∗ a = a ∗ c \forall a, b, c\in A, a*b *a = a * c a,b,cA,aba=ac

证明:
(1)
a ∗ a = a ∗ a ⇒ a = a a*a=a*a\Rightarrow a= a aa=aaa=a
(2)
a ∗ a ∗ b ∗ a = a ∗ b ∗ a = a ∗ b ∗ a ∗ a ⇒ a = a ∗ b ∗ a a* a * b *a= a * b * a= a * b * a * a\Rightarrow a = a * b * a aaba=aba=abaaa=aba
(3)
a ∗ c ∗ a ∗ b ∗ c = a ∗ b ∗ c a ∗ b ∗ c ∗ a ∗ c = a ∗ b ∗ c ⇒ a ∗ c ∗ a ∗ b ∗ c = a ∗ b ∗ c ∗ a ∗ c ⇒ a ∗ b ∗ c = a ∗ c a * c * a * b * c=a * b * c\\ a * b * c * a * c = a * b* c\\ \Rightarrow a * c * a * b * c = a * b * c * a * c\\ \Rightarrow a * b * c = a * c acabc=abcabcac=abcacabc=abcacabc=ac

参考:
离散数学(刘玉珍)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值