符号
I
\mathbb{I}
I表示整数
I
+
\mathbb{I}_+
I+表示正整数
ρ
(
A
)
\rho\left(A\right)
ρ(A):设
A
A
A是集合,则称
{
x
∣
x
⊆
A
}
\left\{x|x\subseteq A\right\}
{x∣x⊆A}为
A
A
A的幂集
代数运算
设
A
A
A为非空集合,
n
∈
I
+
n\in \mathbb{I}_+
n∈I+,函数
f
:
A
n
→
A
f: A^n \to A
f:An→A称为
A
A
A上的一个
n
n
n元运算,
n
n
n称为该运算的阶
特别地,
A
A
A中的每个元素称为
A
A
A上的一个0元运算
性质
封闭
设 ∘ \circ ∘是集合 A A A上的 n n n元运算, S S S是 A A A的非空子集,若 ∀ a 1 , a 2 , ⋯ , a n ∈ S \forall a_1,a_2,\cdots, a_n \in S ∀a1,a2,⋯,an∈S有 ∘ ( a 1 , a 2 , ⋯ , a n ) ∈ S \circ\left(a_1,a_2,\cdots, a_n\right)\in S ∘(a1,a2,⋯,an)∈S,则称 S S S关于运算 ∘ \circ ∘是封闭的
定理
设
∘
\circ
∘是集合
A
A
A上的
n
n
n元运算,
ζ
\zeta
ζ是
ρ
(
A
)
\rho\left(A\right)
ρ(A)的非空子集,若
∀
S
∈
ζ
\forall S\in \zeta
∀S∈ζ,
S
S
S关于
∘
\circ
∘是封闭的,
则
∩
ζ
\cap\zeta
∩ζ关于
∘
\circ
∘也是封闭的,即广义交保持封闭性
交换律
设 ∗ * ∗是集合 A A A上的二元运算,若 a , b ∈ A a,b\in A a,b∈A,有 a ∗ b = b ∗ a a*b = b * a a∗b=b∗a,则称 ∗ * ∗是可交换的,或 ∗ * ∗满足交换律
结合律
设 ∗ * ∗是集合 A A A上的二元运算,若 ∀ a , b , c ∈ A \forall a,b,c \in A ∀a,b,c∈A,有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) \left(a*b\right)*c = a*\left(b*c\right) (a∗b)∗c=a∗(b∗c),则称 ∗ * ∗是可结合的,或称 ∗ * ∗满足结合律
分配律
设
∗
*
∗和
∘
\circ
∘是集合
A
A
A上的二元运算
(1)若
∀
a
,
b
,
c
∈
A
\forall a,b,c\in A
∀a,b,c∈A,有
a
∗
(
b
∘
c
)
=
(
a
∗
b
)
∘
(
a
∗
c
)
a * \left(b\circ c\right) = \left(a * b\right) \circ\left(a*c\right)
a∗(b∘c)=(a∗b)∘(a∗c),则称
∗
*
∗关于
∘
\circ
∘是左可分配的
(2)若
∀
a
,
b
,
c
∈
A
\forall a,b,c\in A
∀a,b,c∈A,有
(
b
∘
c
)
∗
a
=
(
b
∗
a
)
∘
(
c
∗
a
)
\left(b\circ c\right) * a = \left(b * a\right) \circ\left(c*a\right)
(b∘c)∗a=(b∗a)∘(c∗a),则称
∗
*
∗关于
∘
\circ
∘是右可分配的
(3)若
∗
*
∗关于
∘
\circ
∘即使做客分配的,又是右可分配的,则称
∗
*
∗关于
∘
\circ
∘是可分配的,或称
∗
*
∗关于
∘
\circ
∘满足分配律
定理
设 ∗ * ∗是集合 A A A上可结合的二元运算,则 ∀ n ∈ I + \forall n \in \mathbb{I}_+ ∀n∈I+, ∀ a 1 , a 2 , ⋯ , a n ∈ A \forall a_1,a_2,\cdots, a_n\in A ∀a1,a2,⋯,an∈A,表达式 a 1 ∗ a 2 ∗ ⋯ ∗ a n a_1 * a_2*\cdots * a_n a1∗a2∗⋯∗an经任意加括号而计算出的结果不变
证明:
设
∏
i
=
1
n
a
i
=
(
⋯
(
(
a
1
∗
a
2
)
∗
a
3
)
⋯
∗
a
n
−
1
)
∗
a
n
\prod_{i=1}^{n}a_i = \left(\cdots\left(\left(a_1 * a_2\right) * a_3\right)\cdots * a_{n-1}\right)*a_n
i=1∏nai=(⋯((a1∗a2)∗a3)⋯∗an−1)∗an
n
=
1
,
2
n=1,2
n=1,2时显然成立
假设
k
<
n
k<n
k<n时成立
当
k
=
n
k=n
k=n时
设
a
1
∗
a
2
∗
⋯
∗
a
n
a_1*a_2*\cdots * a_n
a1∗a2∗⋯∗an任意加括号所得结果中最后一次计算时
α
∗
β
\alpha * \beta
α∗β
其中
α
\alpha
α表示
m
m
m个元
a
1
,
a
2
,
⋯
,
a
m
a_1,a_2,\cdots,a_m
a1,a2,⋯,am的计算结果
β
\beta
β表示
n
−
m
n-m
n−m个元
a
1
,
a
2
,
⋯
,
a
n
−
m
a_1,a_2,\cdots,a_{n-m}
a1,a2,⋯,an−m的计算结果
1
≤
m
<
n
1\le m < n
1≤m<n
α
=
∏
i
=
1
m
a
i
,
β
=
∏
j
=
m
+
1
n
a
j
\alpha = \prod_{i=1}^{m}a_i,\quad \beta = \prod_{j=m+1}^{n}a_j
α=i=1∏mai,β=j=m+1∏naj
若
m
=
n
−
1
m=n-1
m=n−1,则
α
∗
β
=
∏
i
=
1
n
a
i
\alpha * \beta = \prod_{i=1}^{n}a_i
α∗β=i=1∏nai
若
m
<
n
−
1
m < n-1
m<n−1,则
α
∗
β
=
(
∏
i
=
1
m
a
i
)
∗
(
∏
j
=
m
+
1
n
a
j
)
=
(
∏
i
=
1
m
a
i
)
∗
(
(
∏
j
=
m
+
1
n
−
1
a
j
)
∗
a
n
)
=
(
(
∏
i
=
1
m
a
i
)
∗
(
∏
j
=
m
+
1
n
−
1
a
j
)
)
∗
a
n
=
(
∏
i
=
1
n
−
1
a
i
)
∗
a
n
=
∏
i
=
1
n
a
i
\begin{aligned} \alpha * \beta &=\left(\prod_{i=1}^{m}a_i\right) * \left(\prod_{j=m+1}^{n}a_j\right)\\ &=\left(\prod_{i=1}^{m}a_i\right) * \left(\left(\prod_{j=m+1}^{n-1}a_j\right)*a_n\right)\\ &=\left(\left(\prod_{i=1}^{m}a_i\right) * \left(\prod_{j=m+1}^{n-1}a_j\right)\right) * a_n\\ &=\left(\prod_{i=1}^{n-1}a_i\right) * a_n\\ &=\prod_{i=1}^{n}a_i \end{aligned}
α∗β=(i=1∏mai)∗(j=m+1∏naj)=(i=1∏mai)∗((j=m+1∏n−1aj)∗an)=((i=1∏mai)∗(j=m+1∏n−1aj))∗an=(i=1∏n−1ai)∗an=i=1∏nai
因此
∀
n
∈
I
+
\forall n\in \mathbb{I}_+
∀n∈I+,定理成立
单位元
设
∗
*
∗时集合
A
A
A上的二元运算
(1)若
∃
e
l
∈
A
\exists e_l \in A
∃el∈A,使得
∀
a
∈
A
\forall a \in A
∀a∈A,有
e
l
∗
a
=
a
e_l * a = a
el∗a=a,则称
e
l
e_l
el为关于
∗
*
∗的左单位元,也称左幺元
(2)若
∃
e
r
∈
A
\exists e_r \in A
∃er∈A,使得
∀
a
∈
A
\forall a \in A
∀a∈A,有
a
∗
e
r
=
a
a * e_r = a
a∗er=a,则称
e
r
e_r
er为关于
∗
*
∗的右单位元,也称右幺元
(3)若
∃
e
∈
A
\exists e \in A
∃e∈A,使得
∀
a
∈
A
\forall a \in A
∀a∈A,有
e
∗
a
=
a
∗
e
=
a
e * a = a * e = a
e∗a=a∗e=a,则称
e
e
e为关于
∗
*
∗的单位元,也称幺元
定理
设 ∗ * ∗使集合 A A A上的二元运算, e l e_l el和 e r e_r er分别使关于 ∗ * ∗的左单位元和右单位元,则 e l = e r e_l=e_r el=er,且它是关于 ∗ * ∗的唯一单位元
证明:
e
l
=
e
l
∗
e
r
=
e
r
e_l = e_l * e_r = e_r
el=el∗er=er
令
e
=
e
l
=
e
r
e= e_l =e_r
e=el=er,设
e
′
e^{\prime}
e′也是单位元
e
′
=
e
′
∗
e
=
e
e^{\prime} = e^{\prime} * e = e
e′=e′∗e=e
零元
设
∗
*
∗时集合
A
A
A上的二元运算
(1)若
∃
0
l
∈
A
\exists 0_l \in A
∃0l∈A,使得
∀
a
∈
A
\forall a \in A
∀a∈A,有
0
l
∗
a
=
0
l
0_l * a = 0_l
0l∗a=0l,则称
0
l
0_l
0l为关于
∗
*
∗的左零元
(2)若
∃
0
r
∈
A
\exists 0_r \in A
∃0r∈A,使得
∀
a
∈
A
\forall a \in A
∀a∈A,有
a
∗
0
r
=
0
r
a * 0_r = 0_r
a∗0r=0r,则称
0
r
0_r
0r为关于
∗
*
∗的右零元
(3)若
∃
0
∈
A
\exists 0 \in A
∃0∈A,使得
∀
a
∈
A
\forall a \in A
∀a∈A,有
0
∗
a
=
a
∗
0
=
0
0 * a = a * 0 = 0
0∗a=a∗0=0,则称
0
0
0为关于
∗
*
∗的零元
定理
设 ∗ * ∗使集合 A A A上的二元运算, 0 l 0_l 0l和 0 r 0_r 0r分别使关于 ∗ * ∗的左零元和右零元,则 0 l = 0 r 0_l=0_r 0l=0r,且它是关于 ∗ * ∗的唯一零元
逆元
设
∗
*
∗时集合
A
A
A上的二元运算,
e
e
e是关于
∗
*
∗的单位元,
a
∈
A
a\in A
a∈A
(1)若
∃
a
l
∈
A
\exists a_l \in A
∃al∈A,使得
a
l
∗
a
=
e
a_l * a = e
al∗a=e,则称
a
a
a关于
∗
*
∗是左可逆的,并称
a
l
a_l
al是
a
a
a的关于
∗
*
∗的左逆元
(2)若
∃
a
r
∈
A
\exists a_r \in A
∃ar∈A,使得
a
∗
a
r
=
e
a * a_r = e
a∗ar=e,则称
a
a
a关于
∗
*
∗是右可逆的,并称
a
r
a_r
ar是
a
a
a的关于
∗
*
∗的右逆元
(3)若
∃
a
′
∈
A
\exists a^{\prime} \in A
∃a′∈A,使得
a
′
∗
a
=
a
∗
a
′
=
e
a^{\prime}* a= a * a^{\prime} = e
a′∗a=a∗a′=e,则称
a
a
a关于
∗
*
∗是可逆的,并称
a
′
a^{\prime}
a′是
a
a
a的关于
∗
*
∗的逆元
定理
设 ∗ * ∗是集合 A A A上可结合的二元运算, e e e是关于 ∗ * ∗的单位元, a l a_l al和 a r a_r ar分别是关于 a ∈ A a\in A a∈A的左逆元和右逆元,则 a l = a r a_l = a_r al=ar,且它是 a a a的唯一逆元
证明:
a
l
=
a
l
∗
e
=
a
l
∗
(
a
∗
a
r
)
=
(
a
l
∗
a
)
∗
a
r
=
e
∗
a
r
=
a
r
a_l = a_l * e = a_l * \left(a * a _r\right) = \left(a_l * a\right) * a_r = e * a_r = a_r
al=al∗e=al∗(a∗ar)=(al∗a)∗ar=e∗ar=ar
a
′
=
a
l
=
a
r
a^{\prime} = a_l =a_r
a′=al=ar是
a
a
a的一个逆元,设
a
′
′
a^{\prime \prime}
a′′也是
a
a
a的一个逆元
a
′
=
a
′
∗
e
=
a
′
∗
(
a
∗
a
′
′
)
=
(
a
′
∗
a
)
∗
a
′
′
=
e
∗
a
′
′
=
a
′
′
a^{\prime} = a^{\prime}* e =a^{\prime} * \left(a * a^{\prime \prime}\right) = \left(a^{\prime} * a\right) * a^{\prime \prime} = e * a^{\prime \prime} = a^{\prime \prime}
a′=a′∗e=a′∗(a∗a′′)=(a′∗a)∗a′′=e∗a′′=a′′
可约
设
∗
*
∗时集合
A
A
A上的二元运算,
a
∈
A
a\in A
a∈A
(1)若
∀
x
,
y
∈
A
\forall x, y \in A
∀x,y∈A,
a
∗
x
=
a
∗
y
⇒
x
=
y
a * x = a * y\Rightarrow x = y
a∗x=a∗y⇒x=y,则称
a
a
a关于
∗
*
∗是左可约的
(2)若
∀
x
,
y
∈
A
\forall x, y \in A
∀x,y∈A,
x
∗
a
=
y
∗
a
⇒
x
=
y
x * a = y * a\Rightarrow x = y
x∗a=y∗a⇒x=y,则称
a
a
a关于
∗
*
∗是右可约的
(3)若
a
a
a既是左可约的,又是右可约的,则称
a
a
a关于
∗
*
∗是可约的
设 ∗ * ∗是集合 A A A上的二元运算,若 ∀ a ∈ A \forall a \in A ∀a∈A, a a a关于 ∗ * ∗是可约的,则称 ∗ * ∗满足消去律
定理
设 ∗ * ∗时集合 A A A上的二元可结合运算, a ∈ A a\in A a∈A,若 a a a关于 ∗ * ∗是可逆的,则 a a a关于 ∗ * ∗是可约的
证明:
∀
x
,
y
∈
A
\forall x,y \in A
∀x,y∈A,若
a
∗
x
=
a
∗
y
a * x = a *y
a∗x=a∗y,则
a
−
1
∗
(
a
∗
x
)
=
a
−
1
∗
(
a
∗
y
)
a^{-1} * \left(a * x\right) = a^{-1} * \left(a * y\right)
a−1∗(a∗x)=a−1∗(a∗y),由结合律
x
=
y
x = y
x=y,故
a
a
a左可约
右可约同理,因此
a
a
a是可约的
代数系统
设
S
S
S为非空集合,
∗
1
,
∗
2
,
⋯
,
∗
n
*_1, *_2,\cdots, *_n
∗1,∗2,⋯,∗n为
S
S
S上的代数运算,则称
<
S
,
∗
1
,
∗
2
,
⋯
,
∗
n
>
\left<S, *_1, *_2,\cdots,*_n\right>
⟨S,∗1,∗2,⋯,∗n⟩为一个代数系统或代数结构,并称
S
S
S为该代数系统的定义域
若
S
S
S为有限集,则称
<
S
,
∗
1
,
∗
2
,
⋯
,
∗
n
>
\left<S, *_1, *_2,\cdots,*_n\right>
⟨S,∗1,∗2,⋯,∗n⟩为有限代数系统,并称
∣
S
∣
\left|S\right|
∣S∣为该代数系统的阶
设
<
S
,
∗
1
,
∗
2
,
⋯
,
∗
n
>
\left<S, *_1, *_2,\cdots,*_n\right>
⟨S,∗1,∗2,⋯,∗n⟩为代数系统,
T
T
T为
S
S
S的非空子集,
若
T
T
T关于每个
∗
i
*_i
∗i都封闭,则称代数系统
<
T
,
∗
1
′
,
∗
2
′
,
⋯
,
∗
n
′
>
\left<T, *_1^{\prime}, *_2^{\prime},\cdots,*_n^{\prime}\right>
⟨T,∗1′,∗2′,⋯,∗n′⟩为
<
S
,
∗
1
,
∗
2
,
⋯
,
∗
n
>
\left<S, *_1, *_2,\cdots,*_n\right>
⟨S,∗1,∗2,⋯,∗n⟩的子代数,其中
∗
i
′
*_i^{\prime}
∗i′为
∗
i
*_i
∗i在
T
T
T上的限制,为了简便起见,
<
T
,
∗
1
′
,
∗
2
′
,
⋯
,
∗
n
′
>
\left<T, *_1^{\prime}, *_2^{\prime},\cdots,*_n^{\prime}\right>
⟨T,∗1′,∗2′,⋯,∗n′⟩就记作
<
T
,
∗
1
,
∗
2
,
⋯
,
∗
n
>
\left<T, *_1, *_2,\cdots,*_n\right>
⟨T,∗1,∗2,⋯,∗n⟩
课后习题
2.设
∗
*
∗是集合
A
A
A上的二元运算,
e
e
e和
0
0
0分别是关于
∗
*
∗的单位元和零元,试证明:若
∣
A
∣
>
1
\left|A\right|>1
∣A∣>1,则
e
=
0
e=0
e=0
证明:
∀
x
∈
A
\forall x \in A
∀x∈A
x
=
e
∗
x
=
0
∗
x
=
0
x = e * x = 0 * x = 0
x=e∗x=0∗x=0
进而KaTeX parse error: Expected '}', got '\right' at position 10: A=\left{0\̲r̲i̲g̲h̲t̲\}
矛盾
4.整数集
I
\mathbb{I}
I上的二元运算
∗
*
∗定义为:
∀
x
,
y
∈
I
,
x
∗
y
=
x
+
y
−
x
y
\forall x,y\in \mathbb{I}, x * y = x+ y - xy
∀x,y∈I,x∗y=x+y−xy
试证明:
∗
*
∗是可交换的和可结合的;求出其单位元,并指出每个可逆元的逆元
证明:
显然
∗
*
∗是可交换的和可结合
x
∗
y
=
x
⇒
y
=
0
x*y=x\Rightarrow y=0
x∗y=x⇒y=0
因此单位元为
0
0
0
x
∗
y
=
x
+
y
−
x
y
=
0
⇒
y
=
x
x
−
1
x * y=x+y-xy=0\Rightarrow y=\frac{x}{x-1}
x∗y=x+y−xy=0⇒y=x−1x
因为
y
∈
I
y\in\mathbb{I}
y∈I,并且
g
c
d
(
x
,
x
−
1
)
=
1
gcd\left(x, x-1\right) = 1
gcd(x,x−1)=1
因此
x
=
2
,
y
=
1
;
x
=
0
,
y
=
0
x=2, y=1; x=0, y=0
x=2,y=1;x=0,y=0
2
2
2的逆元为
1
1
1
1
1
1的逆元为
2
2
2
0
0
0的逆元为
0
0
0
其余元素不可逆
7.由下述运算表所定义的二元运算
∗
*
∗是否为科狡滑你得?是否有单位元?
对于有单位元的运算,哪些元素是可逆的?并对可逆元给出它们的逆元
(1)
* | a | b | c | d |
---|---|---|---|---|
a | a | b | c | d |
b | b | c | d | a |
c | c | d | a | b |
d | d | a | b | c |
(2)
* | a | b | c | d |
---|---|---|---|---|
a | a | a | a | a |
b | a | b | c | b |
c | d | c | a | c |
d | d | d | c | d |
解:
(1)可交换
a
a
a是单位元
a
a
a的逆元为
a
a
a
b
b
b的逆元为
d
d
d
c
c
c的逆元为
c
c
c
d
d
d的逆元为
d
d
d
(2)不可交换
b
b
b是单位元
b
b
b的单位元是
b
b
b
8.设 A A A有限集合,且 ∣ A ∣ = n \left|A\right|=n ∣A∣=n, A A A上的二元运算有多少个,其中有多少个运算是可交换的?有多少个运算具有单位元
解:
二元运算有
n
n
2
n^{n^2}
nn2个
可交换
n
1
+
2
+
.
.
.
n
=
n
n
(
n
+
1
)
2
n^{1+2+...n}=n^{\frac{n\left(n+1\right)}{2}}
n1+2+...n=n2n(n+1)(对称矩阵)
有单位元:
n
∗
n
(
n
−
1
)
2
=
n
n
2
−
2
n
+
2
n * n^{\left(n-1\right)^2}=n^{n^2 -2n + 2}
n∗n(n−1)2=nn2−2n+2
(因为单位元,所以一行一列已经确定,然后单位元有
n
n
n种选法)
9设
∗
*
∗是集合
A
A
A上可结合的二元运算,且
∀
a
,
b
∈
A
\forall a,b\in A
∀a,b∈A,若
a
∗
b
=
b
∗
a
a*b=b*a
a∗b=b∗a,则
a
∗
b
a*b
a∗b
试证明:
(1)
∀
a
∈
A
,
a
∗
a
=
a
\forall a \in A, a* a=a
∀a∈A,a∗a=a,即
a
a
a是幂等元
(2)
∀
a
,
b
∈
A
,
a
∗
b
∗
a
=
a
\forall a,b\in A, a*b*a=a
∀a,b∈A,a∗b∗a=a
(3)
∀
a
,
b
,
c
∈
A
,
a
∗
b
∗
a
=
a
∗
c
\forall a, b, c\in A, a*b *a = a * c
∀a,b,c∈A,a∗b∗a=a∗c
证明:
(1)
a
∗
a
=
a
∗
a
⇒
a
=
a
a*a=a*a\Rightarrow a= a
a∗a=a∗a⇒a=a
(2)
a
∗
a
∗
b
∗
a
=
a
∗
b
∗
a
=
a
∗
b
∗
a
∗
a
⇒
a
=
a
∗
b
∗
a
a* a * b *a= a * b * a= a * b * a * a\Rightarrow a = a * b * a
a∗a∗b∗a=a∗b∗a=a∗b∗a∗a⇒a=a∗b∗a
(3)
a
∗
c
∗
a
∗
b
∗
c
=
a
∗
b
∗
c
a
∗
b
∗
c
∗
a
∗
c
=
a
∗
b
∗
c
⇒
a
∗
c
∗
a
∗
b
∗
c
=
a
∗
b
∗
c
∗
a
∗
c
⇒
a
∗
b
∗
c
=
a
∗
c
a * c * a * b * c=a * b * c\\ a * b * c * a * c = a * b* c\\ \Rightarrow a * c * a * b * c = a * b * c * a * c\\ \Rightarrow a * b * c = a * c
a∗c∗a∗b∗c=a∗b∗ca∗b∗c∗a∗c=a∗b∗c⇒a∗c∗a∗b∗c=a∗b∗c∗a∗c⇒a∗b∗c=a∗c
参考:
离散数学(刘玉珍)