同态与同构

定义

A = < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > A = \left<S, *_1, *_2,\cdots, *_n\right> A=S,1,2,,n A ′ = < S ′ , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > A^{\prime} = \left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> A=S,1,2,,n是两个代数系统
∀ i ∈ N ( 1 ≤ i ≤ N ) \forall i \in N\left(1\le i \le N\right) iN(1iN), ∗ i *_i i ∗ i ′ *_i^{\prime} i是同阶运算,则称 A A A A ′ A^{\prime} A同型的

∗ * ∗ ′ *^{\prime} 分别是集合 S S S S ′ S^{\prime} S上的 n n n元运算,函数 h : S → S ′ h:S\to S^{\prime} h:SS
∀ a 1 , a 2 , ⋯   , a n ∈ S + \forall a_1, a_2,\cdots, a_n \in S_+ a1,a2,,anS+,都有
h ( ∗ ( a 1 , a 2 , ⋯   , a n ) ) = ∗ ′ ( h ( a 1 ) , h ( a 2 ) , ⋯   , h ( a n ) ) h\left(*\left(a_1,a_2,\cdots, a_n\right)\right) = *^{\prime}\left(h\left(a_1\right), h\left(a_2\right),\cdots, h\left(a_n\right)\right) h((a1,a2,,an))=(h(a1),h(a2),,h(an))
则称 h h h关于 ∗ * ∗ ′ *^{\prime} 保持运算

A = < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > A = \left<S, *_1, *_2,\cdots, *_n\right> A=S,1,2,,n A ′ = < S ′ , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > A^{\prime} = \left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> A=S,1,2,,n是两个同型的代数系统,函数 h : S → S ′ h:S\to S^{\prime} h:SS
∀ i ∈ N ( 1 ≤ i ≤ N ) \forall i \in N\left(1\le i \le N\right) iN(1iN), h h h都关于 ∗ i *_i i ∗ i ′ *_i^{\prime} i保持运算,则称 h h h A A A A ′ A^{\prime} A的同态映射,并称 A A A A ′ A^{\prime} A是同态的,特别地
(1)若 h h h是单射,则称 h h h单一同态
(2)若 h h h是满射,则称 h h h满同态,记为 A ∼ A ′ A\sim A^{\prime} AA
(3)若 h h h是双摄,则称 h h h为同构映射,并称 A A A A ′ A^{\prime} A同构的,记为 A ≅ A ′ A\cong A^{\prime} AA
(4)若 A = A ′ A=A^{\prime} A=A,则称 h h h自同态
(5)若 A = A ′ A=A^{\prime} A=A,且 h h h是双射的,则称 h h h自同构

定理1

f f f是从 A = < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > A = \left<S, *_1, *_2,\cdots, *_n\right> A=S,1,2,,n A ′ = < S ′ , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > A^{\prime} = \left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> A=S,1,2,,n的同态,
g g g是从 A ′ = < S ′ , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > A^{\prime} = \left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> A=S,1,2,,n A ′ ′ = < S ′ ′ , ∗ 1 ′ ′ , ∗ 2 ′ ′ , ⋯   , ∗ n ′ ′ > A^{\prime\prime} = \left<S^{\prime\prime}, *_1^{\prime\prime}, *_2^{\prime\prime},\cdots, *_n^{\prime\prime}\right> A′′=S′′,1′′,2′′,,n′′的同态,
g ∘ f g\circ f gf是从 A A A A ′ ′ A^{\prime\prime} A′′的同态

证明: ∀ i ∈ N ( 1 ≤ i ≤ n i ) \forall i \in \mathbb{N}\left(1 \le i \le n_i\right) iN(1ini) ∀ a 1 , a 2 , ⋯   , a n ∈ S \forall a_1, a_2,\cdots, a_n\in S a1,a2,,anS
(其中 n i n_i ni是运算 ∗ i *_i i的阶)
g ∘ f ( ∗ i ( a 1 , a 2 , ⋯   , a n i ) ) = g ( f ( ∗ i ( a 1 , a 2 , ⋯   , a n i ) ) ) = g ( ∗ i ′ ( f ( a 1 ) , f ( a 2 ) , ⋯   , f ( a n i ) ) ) = ∗ ′ ′ ( g ( f ( a 1 ) ) , g ( f ( a 2 ) ) , ⋯   , g ( f ( a n i ) ) ) = ∗ ′ ′ ( g ( f ( a 1 ) ) , g ( f ( a 2 ) ) , ⋯   , g ( f ( a n i ) ) ) \begin{aligned} & g\circ f\left(*_i\left(a_1, a_2,\cdots, a_{n_i}\right)\right)\\ =&g\left(f\left(*_i\left(a_1, a_2,\cdots, a_{n_i}\right)\right)\right)\\ =&g\left(*_i^{\prime}\left(f\left(a_1\right), f\left(a_2\right),\cdots, f\left(a_{n_i}\right)\right)\right)\\ =&_*^{\prime\prime}\left(g\left(f\left(a_1\right)\right), g\left(f\left(a_2\right)\right), \cdots, g\left(f\left(a_{n_i}\right)\right)\right)\\ =&_*^{\prime\prime}\left(g\left(f\left(a_1\right)\right), g\left(f\left(a_2\right)\right), \cdots, g\left(f\left(a_{n_i}\right)\right)\right) \end{aligned} ====gf(i(a1,a2,,ani))g(f(i(a1,a2,,ani)))g(i(f(a1),f(a2),,f(ani)))′′(g(f(a1)),g(f(a2)),,g(f(ani)))′′(g(f(a1)),g(f(a2)),,g(f(ani)))
g ∘ f g\circ f gf是从 A A A A ′ ′ A^{\prime\prime} A′′的同态

定理2

h h h是从 A = < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > A = \left<S, *_1, *_2,\cdots, *_n\right> A=S,1,2,,n A ′ = < S ′ , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > A^{\prime} = \left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> A=S,1,2,,n的同构,则 h − 1 h^{-1} h1是从 A ′ A^{\prime} A A A A的同构

证明:

∀ i ∈ N ( 1 ≤ i ≤ n i ) \forall i \in \mathbb{N}\left(1 \le i \le n_i\right) iN(1ini) ∀ a 1 , a 2 , ⋯   , a n ∈ S \forall a_1, a_2,\cdots, a_n\in S a1,a2,,anS
(其中 n i n_i ni是运算 ∗ i *_i i的阶)
b i = h ( a i ) ∈ S ′ b_i = h\left(a_i\right) \in S^{\prime} bi=h(ai)S
h h h双射, h − 1 ( b i ) = a i h^{-1}\left(b_i\right) = a_i h1(bi)=ai
h ( ∗ i ( a 1 , a 2 , ⋯   , a n i ) ) = ∗ i ′ ( h ( a 1 ) , h ( a 2 ) , ⋯   , h ( a n i ) ) = ∗ i ′ ( b 1 , b 2 , ⋯   , b 3 ) \begin{aligned} h\left(*_i\left(a_1, a_2,\cdots, a_{n_i}\right)\right) &= *_i^{\prime}\left(h\left(a_1\right), h\left(a_2\right), \cdots, h\left(a_{n_i}\right)\right)\\ &= *_i^{\prime}\left(b_1,b_2, \cdots, b_3\right)\\ \end{aligned} h(i(a1,a2,,ani))=i(h(a1),h(a2),,h(ani))=i(b1,b2,,b3)
因此
h − 1 ( ∗ i ′ ( b 1 , b 2 , ⋯   , b 3 ) ) = ∗ i ( a 1 , a 2 , ⋯   , a n i ) = ∗ i ( h − 1 ( a 1 ) , h − 1 ( a 2 ) , ⋯   , h − 1 ( a n i ) ) \begin{aligned} h^{-1}\left(*_i^{\prime}\left(b_1,b_2, \cdots, b_3\right)\right) &= *_i\left(a_1, a_2,\cdots, a_{n_i}\right)\\ &=*_i\left(h^{-1}\left(a_1\right), h^{-1}\left(a_2\right), \cdots, h^{-1}\left(a_{n_i}\right)\right) \end{aligned} h1(i(b1,b2,,b3))=i(a1,a2,,ani)=i(h1(a1),h1(a2),,h1(ani))

h − 1 h^{-1} h1是从 A ′ A^{\prime} A A A A的同构

定理3

h h h是从 A = < S , ∗ 1 , ∗ 2 , ⋯   , ∗ n > A = \left<S, *_1, *_2,\cdots, *_n\right> A=S,1,2,,n A ′ = < S ′ , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > A^{\prime} = \left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right> A=S,1,2,,n的同态,则 h ( A ) = < h ( S ) , ∗ 1 ′ , ∗ 2 ′ , ⋯   , ∗ n ′ > h\left(A\right)=\left<h\left(S\right), *_1^{\prime}, *_2^{\prime}, \cdots, *_n^{\prime}\right> h(A)=h(S),1,2,,n A ′ A^{\prime} A的子代数,称为 A A A关于 h h h同态像

证明:
∀ i ∈ N ( 1 ≤ i ≤ n ) \forall i \in \mathbb{N}\left(1\le i \le n\right) iN(1in) ∀ b 1 , b 2 , ⋯   , b n i ∈ h ( S ) \forall b_1, b_2,\cdots, b_{n_i}\in h\left(S\right) b1,b2,,bnih(S),
∃ a 1 , a 2 , ⋯   , a n i ∈ S \exists a_1, a_2,\cdots, a_{n_i} \in S a1,a2,,aniS,使得 h ( a k ) = b k h\left(a_k\right) = b_k h(ak)=bk,于是
∗ i ′ ( b 1 , b 2 , ⋯   , b n i ) = ∗ i ′ ( h ( a 1 ) , h ( a 2 ) , ⋯   , h ( a n i ) ) = h ( ∗ i ( a 1 , a 2 , ⋯   , a n ) ) ∈ h ( S ) \begin{aligned} *_i^{\prime}\left(b_1, b _2,\cdots, b_{n_i}\right) &= *_i^{\prime}\left(h\left(a_1\right), h\left(a_2\right),\cdots, h\left(a_{n_i}\right)\right) \\ &= h\left(*_i\left(a_1,a_2,\cdots, a_n\right)\right)\in h\left(S\right) \end{aligned} i(b1,b2,,bni)=i(h(a1),h(a2),,h(ani))=h(i(a1,a2,,an))h(S)
所以 h ( S ) h\left(S\right) h(S)关于 ∗ i ′ *_i^{\prime} i封闭,故 h ( A ) h\left(A\right) h(A) A ′ A^{\prime} A的子代数

定理4

h h h是从 A = < S , ∗ , + > A=\left<S, *, +\right> A=S,,+ A ′ = < S ′ , ∗ ◯ , + ◯ > A^{\prime} = \left<S^{\prime},\textcircled{*}, \textcircled{+} \right> A=S,,+的满同态, ∗ * + + + S S S上的二元运算,则
(1)若 ∗ * 是可交换的,则 ∗ ◯ \textcircled{*} 也是可交换的
(2)若 ∗ * 是可结合的,则 ∗ ◯ \textcircled{*} 也是可结合的
(3)若 ∗ * 关于 + + +是可分配的,则 ∗ ◯ \textcircled{*} 关于 + ◯ \textcircled{+} +也是可分配的
(4)若 e e e是关于 ∗ * 的单位元,则 h ( e ) h\left(e\right) h(e)是关于 ∗ ◯ \textcircled{*} 的单位元
(5)若 0 0 0是关于 ∗ * 的零元,则 h ( 0 ) h\left(0\right) h(0)是关于 ∗ ◯ \textcircled{*} 的零元
(6)若 a ∈ S a\in S aS关于 ∗ * 是可逆的 ,则 h ( a ) h\left(a\right) h(a)关于 ∗ ◯ \textcircled{*} 是可逆的,且
h ( a ) − 1 = h ( a − 1 ) h\left(a\right)^{-1} = h\left(a^{-1}\right) h(a)1=h(a1)

证明:
(1) ∀ x , y ∈ S ′ \forall x,y \in S^{\prime} x,yS,因为满射,所以 ∃ a , b ∈ S \exists a,b\in S a,bS,使得 h ( a ) = x , h ( b ) = y h\left(a\right) = x, h\left(b\right)=y h(a)=x,h(b)=y
h ( a ) ∗ ◯ h ( b ) = h ( a ∗ b ) = h ( b ∗ a ) = h ( b ) ∗ ◯ h ( a ) h\left(a\right)\textcircled{*}h\left(b\right) = h\left(a * b\right) = h\left(b * a\right) = h\left(b\right)\textcircled{*}h\left(a\right) h(a)h(b)=h(ab)=h(ba)=h(b)h(a)
∗ ◯ \textcircled{*} 也是可交换的
(2) ∀ x , y , z ∈ S ′ \forall x,y, z\in S^{\prime} x,y,zS,因为满射,所以 ∃ a , b , c ∈ S \exists a,b,c\in S a,b,cS,使得 h ( a ) = x , h ( b ) = y , h ( c ) = z h\left(a\right) = x, h\left(b\right) = y, h\left(c\right)=z h(a)=x,h(b)=y,h(c)=z
( x ∗ ◯ y ) ∗ ◯ z = ( h ( a ) ∗ ◯ h ( b ) ) ∗ ◯ h ( c ) = h ( a ∗ b ) ∗ ◯ h ( c ) = h ( ( a ∗ b ) ∗ c ) = h ( a ∗ ( b ∗ c ) ) = h ( a ) ∗ ◯ h ( b ∗ c ) = h ( a ) ∗ ◯ ( h ( b ) ∗ ◯ h ( c ) ) = x ∗ ◯ ( y ∗ ◯ z ) \begin{aligned} &\left(x\textcircled{*}y\right)\textcircled{*}z\\ =&\left(h\left(a\right)\textcircled{*}h\left(b\right)\right)\textcircled{*}h\left(c\right)\\ =& h\left(a * b\right) \textcircled{*}h\left(c\right)\\ =& h\left(\left(a*b\right)*c\right)\\ =& h\left(a*\left(b*c\right)\right)\\ =&h\left(a\right)\textcircled{*}h\left(b*c\right)\\ =&h\left(a\right)\textcircled{*}\left(h\left(b\right)\textcircled{*}h\left(c\right)\right)\\ =&x\textcircled{*}\left(y\textcircled{*}z\right)\\ \end{aligned} =======(xy)z(h(a)h(b))h(c)h(ab)h(c)h((ab)c)h(a(bc))h(a)h(bc)h(a)(h(b)h(c))x(yz)
∗ ◯ \textcircled{*} 也是可结合的
(3) ∀ x , y , z ∈ S ′ \forall x,y, z\in S^{\prime} x,y,zS,因为满射,所以 ∃ a , b , c ∈ S \exists a,b,c\in S a,b,cS,使得 h ( a ) = x , h ( b ) = y , h ( c ) = z h\left(a\right) = x, h\left(b\right) = y, h\left(c\right)=z h(a)=x,h(b)=y,h(c)=z

x ∗ ◯ ( y + ◯ z ) = h ( a ) ∗ ◯ ( h ( b ) + ◯ h ( c ) ) = h ( a ) ∗ ◯ h ( b + c ) = h ( a ∗ ( b + c ) ) = h ( ( a ∗ b ) + ( a ∗ c ) ) = h ( a ∗ b ) + ◯ h ( a ∗ c ) = ( h ( a ) ∗ ◯ h ( b ) ) + ◯ ( h ( b ) ∗ ◯ h ( c ) ) = ( x ∗ ◯ y ) + ◯ ( x ∗ ◯ z ) \begin{aligned} &x\textcircled{*}\left(y\textcircled{+}z\right)\\ =&h\left(a\right)\textcircled{*}\left(h\left(b\right)\textcircled{+}h\left(c\right)\right)\\ =&h\left(a\right)\textcircled{*}h\left(b +c\right)\\ =&h\left(a *\left(b + c\right)\right)\\ =&h\left(\left(a *b\right) + \left(a * c\right)\right)\\ =&h\left(a * b\right)\textcircled{+}h\left(a * c\right)\\ =&\left(h\left(a\right)\textcircled{*}h\left(b\right)\right)\textcircled{+}\left(h\left(b\right)\textcircled{*}h\left(c\right)\right)\\ =&\left(x\textcircled{*}y\right)\textcircled{+}\left(x\textcircled{*}z\right)\\ \end{aligned} =======x(y+z)h(a)(h(b)+h(c))h(a)h(b+c)h(a(b+c))h((ab)+(ac))h(ab)+h(ac)(h(a)h(b))+(h(b)h(c))(xy)+(xz)
同理 ( y + ◯ z ) ∗ ◯ x = ( y ∗ ◯ x ) + ◯ ( z ∗ ◯ x ) \left(y\textcircled{+}z\right)\textcircled{*}x = \left(y\textcircled{*}x\right)\textcircled{+}\left(z\textcircled{*}x\right) (y+z)x=(yx)+(zx)
∗ ◯ \textcircled{*} 关于 + ◯ \textcircled{+} +也是可分配的
(4)
∀ x ∈ S ′ \forall x \in S^{\prime} xS,因为 h h h满射,所以 ∃ a ∈ S \exists a \in S aS,使得 h ( a ) = x h\left(a\right) = x h(a)=x,于是
h ( e ) ∗ ◯ x = h ( e ) ∗ ◯ ( a ) = h ( e ∗ a ) = h ( a ) = x h\left(e\right)\textcircled{*} x = h\left(e\right) \textcircled{*}\left(a\right) = h\left(e * a\right) = h\left(a\right) = x h(e)x=h(e)(a)=h(ea)=h(a)=x
同理 x ∗ ◯ h ( e ) = x x\textcircled{*} h\left(e\right) = x xh(e)=x,故 h ( e ) h\left(e\right) h(e)是关于 ∗ ◯ \textcircled{*} 的单位元

(5)
∀ x ∈ S ′ \forall x \in S^{\prime} xS,因为 h h h满射,所以 ∃ a ∈ S \exists a \in S aS,使得 h ( a ) = x h\left(a\right) = x h(a)=x,于是
h ( 0 ) ∗ ◯ x = h ( 0 ) ∗ ◯ ( a ) = h ( 0 ∗ a ) = h ( 0 ) h\left(0\right)\textcircled{*} x = h\left(0\right) \textcircled{*}\left(a\right) = h\left(0 * a\right) = h\left(0\right) h(0)x=h(0)(a)=h(0a)=h(0)
同理 x ∗ ◯ h ( 0 ) = h ( 0 ) x\textcircled{*} h\left(0\right) = h\left(0\right) xh(0)=h(0),故 h ( 0 ) h\left(0\right) h(0)是关于 ∗ ◯ \textcircled{*} 的零元
(6)由(4), h ( e ) h\left(e\right) h(e)是关于 ∗ ◯ \textcircled{*} 的单位元
∀ x , y ∈ S ′ \forall x,y \in S^{\prime} x,yS,因为满射,所以 ∃ a , b ∈ S \exists a,b\in S a,bS,使得 h ( a ) = x , h ( b ) = y h\left(a\right) = x, h\left(b\right)=y h(a)=x,h(b)=y
x ∗ ◯ y = h ( a ) ∗ ◯ h ( b ) = h ( a ∗ b ) x\textcircled{*}y = h\left(a\right)\textcircled{*}h\left(b\right)=h\left(a*b\right) xy=h(a)h(b)=h(ab)
b = a − 1 b = a^{-1} b=a1
x ∗ ◯ y = h ( a ) ∗ ◯ h ( a − 1 ) = h ( a ∗ a − 1 ) = h ( e ) x\textcircled{*}y =h\left(a\right) \textcircled{*}h\left(a^{-1}\right) = h\left(a * a^{-1}\right) = h\left(e\right) xy=h(a)h(a1)=h(aa1)=h(e)
同理 h ( a − 1 ) ∗ ◯ h ( a ) = h ( e ) h\left(a^{-1}\right)\textcircled{*}h\left(a\right) = h\left(e\right) h(a1)h(a)=h(e),故 h ( a ) h\left(a\right) h(a)关于 ∗ ◯ \textcircled{*} 是可逆的
后半段没怎么看懂

课后习题

1.考察代数系统 A = < N , ⋅ > A=\left<\mathbb{N},\cdot\right> A=N, B = < { 0 , 1 } , ⋅ > B=\left<\left\{0,1\right\},\cdot \right> B={0,1},,其中 ⋅ \cdot 是普通乘法运算。
函数 f : N → { 0 , 1 } f:\mathbb{N}\to \left\{0,1\right\} f:N{0,1}定义为
f ( n ) = { 1 , ∃ k ∈ N , n = 2 k 0 , o t h e r w i s e f\left(n\right)=\begin{cases} 1, &\exists k\in \mathbb{N}, n=2^k\\ 0, &otherwise \end{cases} f(n)={1,0,kN,n=2kotherwise
试证明: f f f是从 A A A B B B的同态

证明:
a = 2 k 1 , b = 2 k 2 a=2^{k_1}, b = 2^{k_2} a=2k1,b=2k2
f ( a ) = f ( b ) = f ( a ⋅ b ) = 1 f\left(a\right)=f\left(b\right)=f\left(a\cdot b\right)=1 f(a)=f(b)=f(ab)=1

a ≠ 2 k a\neq 2^{k} a=2k
f ( a ) = f ( a ) ∗ f ( b ) = f ( a ∗ b ) = 0 f\left(a\right)=f\left(a\right) * f\left(b\right)=f\left(a * b\right)=0 f(a)=f(a)f(b)=f(ab)=0

4.令 E v \mathbb{E}_v Ev为偶数集。试证明: < I , ⋅ > \left<\mathbb{I},\cdot \right> I, < E v , ⋅ > \left<\mathbb{E}_v,\cdot\right> Ev,不同构

证明:

假设 ⋅ \cdot 是二元运算

< I , ⋅ > \left<\mathbb{I},\cdot \right> I,的单位元为 1 1 1
< E v , ⋅ > \left<\mathbb{E}_v,\cdot\right> Ev,没有右单位元

如果同构,则 ∃ f : I → E v \exists f:\mathbb{I}\to \mathbb{E}_v f:IEv
对于 ∀ a ∈ I \forall a \in \mathbb{I} aI,有
f ( a ) = f ( a ⋅ 1 ) = f ( a ) ⋅ f ( 1 ) f\left(a\right)=f\left(a\cdot 1\right)=f\left(a\right)\cdot f\left(1\right) f(a)=f(a1)=f(a)f(1)
因此 f ( 1 ) f\left(1\right) f(1) < E v , ⋅ > \left<\mathbb{E}_v,\cdot\right> Ev,的右单位元,矛盾

因此不同构

7.设 h h h是从代数系统 < S 1 , ∗ > \left<S_1,*\right> S1, < S 2 , ⋅ > \left<S_2,\cdot \right> S2,的同态, < T 2 , ⋅ > \left<T_2,\cdot\right> T2, < S 2 , ⋅ > \left<S_2,\cdot\right> S2,的子代数
试证明: < h − 1 ( T 2 ) , ∗ > \left<h^{-1}\left(T_2\right),*\right> h1(T2), < S 1 , ∗ > \left<S_1,*\right> S1,的子代数,其中 h − 1 ( T 2 ) = { x ∈ S 1 ∣ h ( x ) ∈ T 2 } h^{-1}\left(T_2\right)=\left\{x\in S_1|h\left(x\right)\in T_2\right\} h1(T2)={xS1h(x)T2}

证明:设 ∗ * 的阶是 n n n
显然 h − 1 ( T 2 ) ⊆ S 1 h^{-1}\left(T_2\right)\subseteq S_1 h1(T2)S1
∀ a 1 , a 2 , ⋯ a n ∈ h − 1 ( T 2 ) \forall a_1,a_2,\cdots a_n\in h^{-1}\left(T_2\right) a1,a2,anh1(T2)
∃ b 1 , b 2 , ⋯ b n ∈ T 2 \exists b_1,b_2,\cdots b_n \in T_2 b1,b2,bnT2
使得 f ( a i ) = b i f\left(a_i\right)=b_i f(ai)=bi

h ( ∗ ( a 1 , a 2 , ⋯ a n ) ) = ⋅ ( h ( a 1 ) , h ( a 2 ) , ⋯   , h ( a n ) ) = ⋅ ( b 1 , b 2 , ⋯   , b n ) \begin{aligned} &h\left(*\left(a_1,a_2,\cdots a_n\right)\right)\\ =&\cdot\left(h\left(a_1\right),h\left(a_2\right),\cdots, h\left(a_n\right)\right)\\ =&\cdot\left(b_1,b_2,\cdots,b_n\right) \end{aligned} ==h((a1,a2,an))(h(a1),h(a2),,h(an))(b1,b2,,bn)
因为 ∗ ( a 1 , a 2 , ⋯ a n ) ∈ S 1 *\left(a_1,a_2,\cdots a_n\right)\in S_1 (a1,a2,an)S1
⋅ ( b 1 , b 2 , ⋯   , b n ) ∈ T 2 \cdot\left(b_1,b_2,\cdots,b_n\right)\in T_2 (b1,b2,,bn)T2
因此 ∗ ( a 1 , a 2 , ⋯ a n ) ∈ h − 1 ( T 2 ) *\left(a_1,a_2,\cdots a_n\right)\in h^{-1}\left(T_2\right) (a1,a2,an)h1(T2)
即封闭

因此 < h − 1 ( T 2 ) , ∗ > \left<h^{-1}\left(T_2\right),*\right> h1(T2), < S 1 , ∗ > \left<S_1,*\right> S1,的子代数

8.设 h 1 h_1 h1 h 2 h_2 h2都是从代数系统 < S , ∗ > \left<S,*\right> S, < S ′ , ⋅ > \left<S^{\prime},\cdot\right> S,的同态
∗ * ⋅ \cdot 都是二元运算,且 ⋅ \cdot 是可交换的和可结合的。作 h : S → S ′ , x ↦ h 1 ( x ) ⋅ h 2 ( x ) h:S\to S^{\prime},x\mapsto h_1\left(x\right)\cdot h_2\left(x\right) h:SS,xh1(x)h2(x)
试证明: h h h也是从 < S , ∗ > \left<S,*\right> S, < S ′ , ⋅ > \left<S^{\prime},\cdot\right> S,的同态

证明:
∀ a , b ∈ S \forall a,b\in S a,bS
h ( a ∗ b ) = h 1 ( a ∗ b ) ⋅ h 2 ( a ∗ b ) = ( h 1 ( a ) ⋅ h 1 ( b ) ) ⋅ ( h 2 ( a ) ⋅ h 2 ( b ) ) = ( h 1 ( a ) ⋅ h 2 ( a ) ) ⋅ ( h 1 ( b ) ⋅ h 2 ( b ) ) = h ( a ) ⋅ h ( b ) \begin{aligned} &h\left(a * b\right)\\ =&h_1\left(a * b\right)\cdot h_2\left(a*b\right)\\ =&\left(h_1\left(a\right)\cdot h_1\left(b\right)\right)\cdot \left(h_2\left(a\right)\cdot h_2\left(b\right)\right)\\ =&\left(h_1\left(a\right)\cdot h_2\left(a\right)\right)\cdot \left(h_1\left(b\right)\cdot h_2\left(b\right)\right)\\ =&h\left(a\right)\cdot h\left(b\right) \end{aligned} ====h(ab)h1(ab)h2(ab)(h1(a)h1(b))(h2(a)h2(b))(h1(a)h2(a))(h1(b)h2(b))h(a)h(b)

因此 h h h也是从 < S , ∗ > \left<S,*\right> S, < S ′ , ⋅ > \left<S^{\prime},\cdot\right> S,的同态

参考:
离散数学(刘玉珍)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值