组合及概率

一、排列组合

有重复元素的全排列

设一组数中有x种,共有n个数,每种数的个数为

ans=

题目:ACM-ICPC 2018 焦作赛区网络预赛L---Poor God Water

#include <bits/stdc++.h>
#define For(i,x,y) for(int i=(x);i<=(y);++i)
#define Fov(i,x,y) for(int i=(x);i>=(y);--i)
#define Fo(i,x,y) for(int i=(x);i<(y);++i)
#define midf(a,b) ((a)+(b)>>1)
#define L(_) (_)<<1
#define R(_) ((_)<<1)|1
#define fi first
#define se second
#define ss(_) scanf("%s",_)
#define si(_) scanf("%d",&_)
#define sii(x,y) scanf("%d%d",&x,&y)
#define siii(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define mem(x,y) memset(x,y,sizeof(x))
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
inline int read()
{
    char ch=getchar(); int x=0, f=1;
    while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar();}
    while('0'<=ch&&ch<='9') { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const ll mod=1e9+7;
ll temp[9][9]=
{0,0,0,1,0,0,1,0,0,
 1,0,0,0,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,
 0,1,0,0,1,0,0,0,0,
 0,1,0,0,0,0,0,1,0,
 0,0,0,0,1,0,0,1,0,
 0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,0,0,0,1,
 0,0,1,0,0,1,0,0,0
};

struct matr
{
    ll m[9][9];
    matr()
    {
        mem(m,0);
    }
    matr operator*(matr a)
    {
        matr c;
        For(i,0,8)
        For(j,0,8)
        {
            c.m[i][j]=0;
            For(k,0,8) c.m[i][j]=(c.m[i][j]+m[i][k]*a.m[k][j])%mod;
        }
        return c;
    }
}x;
ll qpow(ll n)
{
    matr y;
    For(i,0,8) y.m[i][i]=1;
    For(i,0,8) For(j,0,8) x.m[i][j]=temp[i][j];
    while(n)
    {
        if(n&1) y=y*x;
        x=x*x;
        n>>=1;
    }
    ll res=0;
    For(i,0,8) For(j,0,8) res=(res+y.m[i][j])%mod;
    return res;
}

int main()
{
	//freopen("in.txt","r",stdin);
	int T; si(T);
	while(T--)
    {
        ll n,ans;
        scanf("%lld",&n);
        if(n==1) ans=3;
        else if(n==2) ans=9;
        else ans=qpow(n-2);
        printf("%lld\n",ans);
    }
	return 0;
}

二、置换

把n个元素做一个全排列,实际上是一一映射

 

,可用f={ }来表示1~n的一个置换

置换乘法

设f={1,5,6,2,4,3},g={6,2,4,3,5,1},则fg={6,5,1,2,3,4},对于f, 2映射到5,对于g,5映射到5,最终对于fg,2映射到5

循环

对于f={3,5,1,4,2},1映射到3,3又映射回1,形成一个循环(1,3),同理可得到(2,5)、(4)

一个置换可分解为循环的乘积,f=(1 3)(2 5)(4),而分解出来的循环个数为循环节,f的循环节=3

不动点

一个状态经过置换后不发生改变,如上面的4(f(4)=4)

等价类

若两个状态之间存在置换关系,则两者等价,定义多个置换,组成一个置换群

Burnside引理

将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值

Polya定理

所有置换f的不动点个数C(f)= ,等价类数目为C(f)平均值,其中m(f)是f的循环节,k为种类

题目:HDU3923---Invoker

存在两类置换

①旋转:设旋转间隔为i(i=0~n-1),因此有n种置换,循环节m(f)=gcd(i,n),根据Polya定理可得不动点个数a=

②翻转:当n为奇数时,对称轴有n条(n种置换,穿过其中一颗珠子),此时循环节m(f)=(n-1)/2+1,不动点个数b= ;当n为偶数时,对称轴有n/2(穿过两颗珠子)+n/2(不穿过珠子)条(n种置换),m(f)= +1或 ,不动点个数b=

最后由引理可得最后结果为(a+b)/(2*n)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#include<string>
#include<cctype>
#include<cmath>
#include<map>
#include<vector>
#include<utility>
#define For(i,x,y) for(int i=x;i<=y;++i)
#define Fov(i,x,y) for(int i=x;i>=y;--i)
#define midf(a,b) ((a)+(b)>>1)
#define Num1(_) (_)<<1
#define Num2(_) ((_)<<1)|1
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
inline int read()
{
    char ch=getchar(); int x=0, f=1;
    while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar();}
    while('0'<=ch&&ch<='9') { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const int n_max=1e4+10;
const ll mod=1e9+7;
ll qpow(ll x,ll n)
{
    ll res=1;
    while(n)
    {
        if(n&1)
        res=(res*x)%mod;
        x=(x*x)%mod;
        n>>=1;
    }
    return res;
}
ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}
int main()
{
	ll m,n;
	int T,cas=0;
	scanf("%d",&T);
	while(T--)
    {
        ll ans=0;
        scanf("%I64d%I64d",&m,&n);
        for(ll i=0;i<n;++i)
        ans+=qpow(m,gcd(i,n));
	    if(n&1) ans+=n*qpow(m,n+1>>1);
	    else ans+=(n>>1)*(qpow(m,(n>>1)+1)+qpow(m,n>>1));
	    ans=ans%mod*qpow(n*2,mod-2)%mod;
	    printf("Case #%d: %I64d\n",++cas,ans);
    }
	return 0;
}

三、容斥原理

四、线性递推模板

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}

int _,n;
namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];

    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) {
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<<pnt)<=n) pnt++;
        for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)<SZ(B)+m) C.pb(0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    int gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int main() {
    for (scanf("%d",&_);_;_--) {
        scanf("%d",&n);
        printf("%d\n",linear_seq::gao(VI{2,24,96,416,1536,5504,18944,64000,212992,702464},n-1));
    }
}

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值