【CodeForces662C】Binary Table

【题目链接】

【思路要点】

  • 行的取反情况与每一列的初始元素可以看做若干个小于\(2^{N}\)的二进制数。
  • 注意到行很小,我们考虑先枚举每一行是否取反,令行的取反情况为\(Mask\)。
  • 那么,每列的二进制数\(x_i\)应当变成\(x_i\ xor\ Mask\)。
  • 令\(bits_i\)代表\(i\)的二进制表示1的个数,\(Mask\)的最小答案应当为\(\sum_{i=1}^{M}min(bits_{x_i\ xor\ Mask},N-bits_{x_i\ xor\ Mask})\)。
  • 由此,我们得到了一个\(O(M*2^N)\)的算法。
  • 注意到实际上我们只关心\(bits_{x_i\ xor\ Mask}\)而不关心\(x_i\ xor\ Mask\),不妨设\(dp_{k,Mask}\)表示\(bits_{x_i\ xor\ Mask}=k\)的\(i\)的数量。
  • \(dp_{0,Mask}\)就是\(x_i=Mask\)的\(i\)的数量。
  • 对于\(dp_{k,Mask}\)有贡献的\(x_i\),\(x_i\)与\(Mask\)有\(k\)位不同,考虑枚举不同的位\(p\),其对\(dp_{k,Mask}\)的贡献为\(\frac{1}{k}dp_{k-1,Mask\ xor\ 2^p}\),但在这里,我们重复统计了原本与\(Mask\)有\(k-2\)位不同,但在\(p\)处与\(Mask\)相同的\(x_i\),因此,我们需要将\(\frac{1}{k}dp_{k-2,Mask}\)减去,类似地,我们要加上\(\frac{1}{k}dp_{k-3,Mask\ xor\ 2^p}\),减去\(\frac{1}{k}dp_{k-4,Mask}\)……。
  • 这样,我们就得到了一个\(O(N^3*2^N)\)的DP,稍加优化即可得到\(O(N^2*2^N)\)的复杂度,可以通过本题。
  • 但实际上还有一种更快,也更容易的做法。
  • 我们直接考虑答案数组\(Ans_{Mask}\),令\(Cnt_k\)表示\(x_i=k\)的\(i\)的个数,\(tmp_i=min(bits_i,N-bits_i)\)则有$$Ans_{Mask}=\sum_{i\ xor\ Mask=j}cnt_i*tmp_j=\sum_{i\ xor\ j=Mask}cnt_i*tmp_j$$
  • 因此,直接用FWT将\(Cnt\)和\(tmp\)卷积即可,时间复杂度\(O(N*2^N)\)。

【代码】

/*DP Version O(N ^ 2 * 2 ^ N)*/
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 25;
const int MAXM = 100005;
const int MAXS = 1 << 20;
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, m, dp[MAXN][MAXS];
int bit[MAXN], x[MAXM];
char s[MAXN][MAXM];
int sum[2][MAXS];
void chkmin(int &x, int y) {x = min(x, y); }
int main() {
	read(n), read(m);
	for (int i = 1; i <= n; i++)
		scanf("\n%s", s[i] + 1);
	bit[1] = 1;
	for (int i = 2; i <= n; i++)
		bit[i] = bit[i - 1] << 1;
	for (int j = 1; j <= m; j++) {
		for (int i = 1; i <= n; i++)
			if (s[i][j] == '1') x[j] += bit[i];
		dp[0][x[j]]++;
		sum[0][x[j]]++;
	}
	int u = (1 << n) - 1;
	for (int k = 1; k <= n; k++) {
		for (int s = 0; s <= u; s++) {
			int tans = 0;
			for (int i = 1; i <= n; i++)
				tans += sum[(k & 1) ^ 1][s ^ bit[i]] - sum[k & 1][s];
			dp[k][s] = tans / k;
		}
		for (int s = 0; s <= u; s++)
			sum[k & 1][s] += dp[k][s];
	}
	int ans = n * m;
	for (int s = 0; s <= u; s++) {
		int now = 0;
		for (int i = 0; i <= n; i++)
			now += min(i, n - i) * dp[i][s];
		chkmin(ans, now);
	}
	writeln(ans);
	return 0;
}
/*FWT Version O(N * 2 ^ N)*/
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 25;
const int MAXM = 100005;
const int MAXS = 1 << 20;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, m;
char s[MAXN][MAXM];
int bit[MAXN], x[MAXM];
long long cnt[MAXS], bits[MAXS], res[MAXS];
void FWT(long long *a, int N) {
	for (int len = 2; len <= N; len <<= 1)
	for (int i = 0; i < N; i += len)
	for (int j = i, k = i + len / 2; k < i + len; j++, k++) {
		long long tmp = a[j], tnp = a[k];
		a[j] = tmp + tnp;
		a[k] = tmp - tnp;
	}
}
void UFWT(long long *a, int N) {
	for (int len = 2; len <= N; len <<= 1)
	for (int i = 0; i < N; i += len)
	for (int j = i, k = i + len / 2; k < i + len; j++, k++) {
		long long tmp = a[j], tnp = a[k];
		a[j] = (tmp + tnp) / 2;
		a[k] = (tmp - tnp) / 2;
	}
}
int main() {
	read(n), read(m);
	for (int i = 1; i <= n; i++)
		scanf("\n%s", s[i] + 1);
	bit[1] = 1;
	for (int i = 2; i <= n; i++)
		bit[i] = bit[i - 1] << 1;
	for (int j = 1; j <= m; j++) {
		for (int i = 1; i <= n; i++)
			if (s[i][j] == '1') x[j] += bit[i];
		cnt[x[j]]++;
	}
	int u = 1 << n;
	for (int i = 1; i < u; i++)
		bits[i] = bits[i ^ (i & -i)] + 1;
	for (int i = 0; i < u; i++)
		chkmin(bits[i], n - bits[i]);
	FWT(cnt, u);
	FWT(bits, u);
	for (int i = 0; i < u; i++)
		res[i] = cnt[i] * bits[i];
	UFWT(res, u);
	long long ans = n * m;
	for (int i = 0; i < u; i++)
		chkmin(ans, res[i]);
	writeln(ans);
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值