【BZOJ5100】【POI2018】Plan metra

【题目链接】

【思路要点】

  • 分别考虑1和\(N\)之间是否有边直接相连。
  • 若有边相连,所有到1和\(N\)距离的差值的绝对值应该相等。
  • 否则,到1和\(N\)距离的和的最小值就是1到\(N\)的距离,将这条链构造出来,将其它点逐一挂在上面即可。
  • 时间复杂度\(O(N+D)\)。

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 5e5 + 5;
const int MAXV = 2e6 + 5;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int a[MAXN], b[MAXN], p[MAXV];
int c[MAXN], x[MAXN], y[MAXN];
bool check(int n) {
	int val = abs(a[2] - b[2]);
	if (val == 0) return false;
	for (int i = 3; i <= n - 1; i++)
		if (abs(a[i] - b[i]) != val) return false;
	printf("TAK\n%d %d %d\n", 1, n, val);
	for (int i = 2; i <= n - 1; i++)
		if (a[i] <= b[i]) printf("%d %d %d\n", i, 1, a[i]);
		else printf("%d %d %d\n", i, n, b[i]);
	return true;
}
int main() {
	int n; read(n);
	if (n == 2) {
		printf("TAK\n%d %d %d\n", 1, n, 1);
		return 0;
	}
	for (int i = 2; i <= n - 1; i++)
		read(a[i]);
	for (int i = 2; i <= n - 1; i++)
		read(b[i]);
	if (check(n)) return 0;
	int Min = 1e7;
	for (int i = 2; i <= n - 1; i++)
		chkmin(Min, a[i] + b[i]);
	p[0] = 1, p[Min] = n;
	for (int i = 2; i <= n - 1; i++)
		if (Min == a[i] + b[i]) {
			if (p[a[i]] != 0) {
				printf("NIE\n");
				return 0;
			}
			p[a[i]] = i;
		}
	int m = 0;
	int last = 0;
	for (int i = 1; i <= Min; i++)
		if (p[i]) {
			c[++m] = i - last;
			x[m] = p[last], y[m] = p[i];
			last = i;
		}
	for (int i = 2; i <= n - 1; i++)
		if (Min != a[i] + b[i]) {
			int tmp = a[i] + b[i] - Min;
			if (tmp & 1) {
				printf("NIE\n");
				return 0;
			}
			int tnp = a[i] - tmp / 2;
			if (tnp < 0 || p[tnp] == 0) {
				printf("NIE\n");
				return 0;
			}
			c[++m] = tmp / 2;
			x[m] = p[tnp]; y[m] = i;
		}
	printf("TAK\n");
	for (int i = 1; i <= m; i++)
		printf("%d %d %d\n", x[i], y[i], c[i]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值