【省内训练2018-10-26】游走

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_39972971/article/details/83419345

【思路要点】

  • 考虑一个指数暴力,首先枚举每一个位置选择 “见好就收” 还是 “得寸进尺” 。
  • EiE_i 表示从 ii 出发的期望收益。若在 ii 处选择 “见好就收” ,那么 Ei=AiE_i=A_i ,否则,令 ii 之前第一个选择 “见好就收” 的点为 prepre ,之后第一个选择 “见好就收” 的点为 sufsuf ,有 Ei=(ipre)Asufsufpre+(sufi)ApresufpreE_i=\frac{(i-pre)*A_{suf}}{suf-pre}+\frac{(suf-i)*A_{pre}}{suf-pre} (1)(1)
  • (1)(1) 式的证明:
    由题, Ei=Ei1+Ei+12E_i=\frac{E_{i-1}+E_{i+1}}{2} ,即 Ei+1Ei=EiEi1E_{i+1}-E_i=E_i-E_{i-1}Epre,Epre+1,...,EsufE_{pre},E_{pre+1},...,E_{suf} 形成一个等差数列。
    Esuf=Asuf,Epre=ApreE_{suf}=A_{suf},E_{pre}=A_{pre} ,因此 EiE_i 可以由等差数列的性质计算得到。
  • 因此,若我们选择的一系列点为 (i1,Ai1),(i2,Ai2),...(im,Aim)(i_1,A_{i_1}),(i_2,A_{i_2}),...(i_m,A_{i_m}) ,在 i1,i2i_1,i_2 之间的点 jjEjE_j 恰好为 (i1,Ai1),(i2,Ai2)(i_1,A_{i_1}),(i_2,A_{i_2}) 连线的横坐标为 jj 处的纵坐标,而方案的优劣直观地体现于 (i1,Ai1),(i2,Ai2),...(im,Aim)(i_1,A_{i_1}),(i_2,A_{i_2}),...(i_m,A_{i_m}) 形成图形的面积的大小。
  • 不难发现,选择一个凸壳是最优的。
  • 时间复杂度 O(N)O(N)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 5e5 + 5;
const int P = 998244353;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
struct info {int x; };
int n, inv[MAXN]; ll a[MAXN];
int ans[MAXN], q[MAXN], top;
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
int calc(int l, int r) {
	return (a[r] + (a[l] + a[r]) % P * inv[2] % P * (r - l - 1)) % P;
}
bool exclude(int x, int y, int z) {
	return (y - x) * (a[z] - a[x]) - (z - x) * (a[y] - a[x]) >= 0;
}
int main() {
	read(n);
	for (int i = 1; i <= n; i++)
		read(a[i]);
	for (int i = 1; i <= n; i++)
		inv[i] = power(i, P - 2);
	ans[1] = a[1] % P, q[top = 1] = 1;
	for (int i = 2; i <= n; i++) {
		while (top >= 2 && exclude(q[top - 1], q[top], i)) top--;
		q[++top] = i;
		int j = q[top - 1];
		ans[i] = (ans[j] + calc(j, i)) % P;
	}
	for (int i = 1; i <= n; i++)
		printf("%d ", 1ll * ans[i] * inv[i] % P);
	return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页