numpy笔记1

1.np.argmax(array, axis)

对array按照axis找最大的值返回其下标的numpy.ndarray
array 为二维时,axis = 0, 表示按列, axis = 1,表示按行

import numpy as np
a = np.array([[1, 5, 5, 2],
              [9, 6, 2, 8],
              [3, 7, 9, 1]])
b=np.argmax(a, axis=0) # 按照列
print(b)

c=np.argmax(a, axis=1) # 按照行
print(c)

[1 2 2 1]
[1 0 2]
2.np.unique()

该函数去除数组中的重复数字,并排序后输出。
在这里插入图片描述

3.np.prod()
 m = [[[1,2],
  [3,4]],

 [[5,6],
  [7,8]]]


print(np.prod(m, axis = 0)) 
[[ 5 12]
 [21 32]]

print(np.prod(m, axis = 1))
[[ 3  8]
 [35 48]]

print(np.prod(m, axis = 2))
[[ 2 12]
 [30 56]]

print(np.prod(m, axis = -1))

[[ 2 12]
 [30 56]]

axis为0,以最外层为基准,对象是[ [1,2], [3,4] ] 和 [ [5,6], [7,8] ],元素一一相乘, 两个list乘两个

axis为1,对象是 [1,2]和 [3,4],可以对应乘了, 以及 [5,6] 和[7,8],

axis为2,对象是 1,2,3,4,5,6,7,8,两两相乘

### 回答1: numpy是一个高性能的科学计算库,用于处理大型数据集和矩阵运算。它是Python科学计算生态系统中最重要的库之一,提供了丰富的功能和工具。 在numpy的学习过程中,我创建了一个名为"numpy笔记.xmind"的思维导图来总结和记录重要的概念和函数。 首先,我在思维导图中列出了numpy的基本数据结构,包括多维数组(ndarray)、切片和索引。我理解了如何创建和操作这些数据结构,以及如何使用切片和索引访问数组中的元素。 其次,在思维导图中,我详细记录了numpy中的常用函数和方法。这些函数包括数学运算(如加法、乘法和指数运算)、统计函数(如平均值、标准差和方差)和数组操作(如形状变换、拼接和切割)。对于每个函数,我还注明了其参数和用法,以便以后参考。 此外,我还在思维导图中添加了numpy的广播功能和ufunc函数。广播允许我们在不同形状的数组之间进行元素级别的操作,而ufunc函数则可以对数组进行逐元素的函数调用。对于这两个功能,我记录了它们的应用场景和使用方法。 最后,我在思维导图中补充了一些numpy的高级特性和应用,如随机数生成、文件IO以及与其他科学计算库(如pandas和matplotlib)的集成。这些特性和应用使numpy成为了进行数据分析和科学计算的重要工具。 通过创建和总结"numpy笔记.xmind"这个思维导图,我能够更好地理解和掌握numpy的知识。这份笔记将成为我学习和使用numpy的重要参考资料,帮助我在科学计算和数据分析的过程中提高效率和准确性。 ### 回答2: numpy(Numerical Python)是Python中用于进行科学计算的一个库。它提供了丰富的高性能数值计算工具,特别是对于大规模多维数组的操作。下面是关于numpy的一些笔记。 1. 数组的创建:numpy使用ndarray对象来存储多维数组。可以使用numpy.array()函数创建数组,也可以使用numpy.zeros()、numpy.ones()等函数创建特定初始值的数组。 2. 数组的属性:可以使用ndarray的属性来获取数组的形状、大小、数据类型等信息。例如,shape属性可以得到数组的维度大小,dtype属性可以得到数组的数据类型。 3. 数组的索引和切片:可以通过索引来访问数组中的元素。numpy中的索引从0开始,可以使用负数表示相对于数组尾部的位置。切片可以用来获取数组的部分元素。可以使用冒号分隔切片的起始、结束和步长值。 4. 数组的运算:numpy支持对数组的逐元素运算,包括加减乘除、求幂、取余等。可以使用numpy的函数进行常见的数学运算,也可以使用ndarray对象的方法进行相应的操作。 5. 广播:numpy中的广播机制可以自动处理形状不一致的数组之间的运算。广播可以使得形状不一致的数组能够按需扩展以便进行元素运算,而不需要进行明确的形状调整操作。 6. 数组的重塑和转置:可以使用reshape()函数对数组进行重新排列,改变其形状。transpose()函数可以用来进行数组的转置操作。 7. 数组的聚合操作:numpy提供了很多用于数组聚合操作的函数,例如对数组进行求和、求平均、求最大最小值等。 8. 数组的存储和读取:可以使用numpy提供的函数将数组保存到文件中,也可以使用numpy的load()函数从文件中加载数组。 以上是关于numpy的一些基础笔记numpy在科学计算、数据分析等领域具有广泛的应用。掌握numpy的基本操作和常用函数,能够更高效地进行数值计算和数据处理任务。 ### 回答3: numpy是一个开源的Python库,提供了高效的多维数组对象以及对数组操作的函数。笔记.xmind是一种思维导图的文件格式。结合两者,我可以将numpy的使用方法和相关概念通过思维导图的方式记录下来。 在笔记.xmind中,我可以使用中心主题表示numpy,然后通过子主题展开numpy的各个方面。例如,我可以创建一个子主题来介绍numpy的数组对象,包括数组的创建、形状、类型等信息。另外,我还可以创建子主题来记录numpy数组操作的函数,例如数组的索引与切片操作、数组的运算操作等。在每个子主题中,我可以使用节点来记录具体的代码示例,以及相关的说明和注意事项。 除了记录numpy的使用方法外,我还可以创建子主题来介绍numpy中的常用概念和特性。例如,我可以创建一个子主题来介绍numpy中的广播机制,以及在数组运算中的应用。另外,我还可以创建子主题来介绍numpy中的向量化操作和矩阵运算,以及其在科学计算中的重要性。 在整个思维导图中,我可以使用不同的颜色、字体和图标来区分不同的主题或节点,以便更好地组织和呈现信息。可以使用箭头来表示不同主题之间的关系,例如通过箭头表示某个主题是另一个主题的子主题或相关主题。 通过将numpy的使用方法和相关概念以思维导图的形式记录在笔记.xmind中,我可以更清晰地了解和掌握numpy的知识,并且可以随时查阅和复习。这样可以帮助我更好地应用numpy进行数据分析和科学计算,并提高工作效率和代码质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值