青少年编程与数学 02-018 C++数据结构与算法 23课题、分布式算法
课题摘要
分布式算法是分布式系统中的核心,用于解决节点间通信、数据一致性、任务调度等问题。
一、一致性算法
一致性算法确保分布式系统中的所有节点对共享数据达成一致。常见的算法包括 Paxos 和 Raft。
Paxos 算法
Paxos 算法通过一系列步骤确保一致性,包括提议者、接受者和学习者三个角色。
代码示例(C++):
#include <iostream>
#include <vector>
#include <thread>
#include <mutex>
#include <random>
#include <memory>
class Node {
public:
Node(int node_id) : node_id(node_id), proposal_number(0), promised_number(0), accepted_number(0), accepted_value(nullptr) {}
bool prepare(int proposal_number) {
std::lock_guard<std::mutex> lock(mutex_);
if (proposal_number > promised_number) {
promised_number = proposal_number;
return true;
}
return false;
}
bool accept(int proposal_number, std::shared_ptr<std::string> value) {
std::lock_guard<std::mutex> lock(mutex_);
if (proposal_number >= promised_number) {
promised_number = proposal_number;
accepted_number = proposal_number;
accepted_value = value;
return true;
}
return false;
}
private:
int node_id;
int proposal_number;
int promised_number;
int accepted_number;
std::shared_ptr<std::string> accepted_value;
std::mutex mutex_;
};
class Proposer {
public:
Proposer(int proposer_id, std::vector<Node*>& nodes) : proposer_id(proposer_id), nodes(nodes) {}
void propose(const std::string& value) {
std::shared_ptr<std::string> value_ptr = std::make_shared<std::string>(value);
int proposal_number = rand() % 100; // 生成随机提议编号
int promises = 0;
for (Node* node : nodes) {
if (node->prepare(proposal_number)) {
promises++;
}
}
if (promises > nodes.size() / 2) {
int acceptances = 0;
for (Node* node : nodes) {
if (node->accept(proposal_number, value_ptr)) {
acceptances++;
}
}
if (acceptances > nodes.size() / 2) {
std::cout << "Proposal " << proposal_number << " with value '" << *value_ptr << "' has been accepted." << std::endl;
}
}
}
private:
int proposer_id;
std::vector<Node*> nodes;
};
int main() {
std::vector<Node*> nodes;
for (int i = 0; i < 5; ++i) {
nodes.push_back(new Node(i));
}
Proposer proposer(1, nodes);
proposer.propose("ValueA");
for (Node* node : nodes) {
delete node;
}
return 0;
}
二、领导者选举算法
领导者选举算法用于在分布式系统中选出一个领导者节点,负责协调和管理其他节点的操作。常见的算法包括 Bully 算法和环选举算法。
Bully 算法
Bully 算法的基本原理是:每个节点都有一个唯一的 ID,当某个节点检测到领导者失效时,它发起选举,发送选举消息给 ID 比自己大的所有节点。如果收到回复,说明有更高 ID 的节点在运行,自己不再参与选举。如果没有收到回复,则宣布自己为领导者。
代码示例(C++):
#include <iostream>
#include <vector>
#include <thread>
#include <mutex>
#include <condition_variable>
class Node {
public:
Node(int node_id) : node_id(node_id), leader(-1) {}
void election(std::vector<Node*>& nodes) {
std::vector<Node*> higher_id_nodes;
for (Node* node : nodes) {
if (node->node_id > node_id) {
higher_id_nodes.push_back(node);
}
}
if (higher_id_nodes.empty()) {
leader = node_id;
std::cout << "Node " << node_id << " elected as leader." << std::endl;
} else {
for (Node* node : higher_id_nodes) {
std::cout << "Node " << node_id << " sends election message to Node " << node->node_id << "." << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1)); // 模拟发送消息
if (node->leader == -1) {
leader = node_id;
std::cout << "Node " << node_id << " elected as leader." << std::endl;
break;
}
}
}
}
private:
int node_id;
int leader;
};
int main() {
std::vector<Node*> nodes;
for (int i = 0; i < 5; ++i) {
nodes.push_back(new Node(i));
}
for (Node* node : nodes) {
node->election(nodes);
}
for (Node* node : nodes) {
delete node;
}
return 0;
}
三、分布式锁算法
分布式锁算法用于在分布式系统中协调对共享资源的访问,确保同一时间只有一个节点可以访问该资源。常见的算法包括基于 ZooKeeper 的分布式锁和基于 Redis 的分布式锁。
基于 ZooKeeper 的分布式锁
ZooKeeper 提供了分布式锁的实现,通过创建临时有序节点来实现锁的获取和释放。
代码示例(C++):
#include <iostream>
#include <string>
#include <memory>
#include <zookeeper/zookeeper.h>
class DistributedLock {
public:
DistributedLock(const std::string& zk_hosts, const std::string& lock_path)
: zk_hosts(zk_hosts), lock_path(lock_path), zk_handle(nullptr) {}
~DistributedLock() {
if (zk_handle) {
zookeeper_close(zk_handle);
}
}
void acquire_lock() {
zk_handle = zookeeper_init(zk_hosts.c_str(), nullptr, 30000, nullptr, nullptr, 0);
std::string lock_node = lock_path + "/lock-";
std::string lock_path_created;
// 创建临时有序节点
int rc = zoo_create(zk_handle, lock_node.c_str(), nullptr, 0, &ZOO_OPEN_ACL_UNSAFE, ZOO_EPHEMERAL | ZOO_SEQUENCE, nullptr, 0);
if (rc == ZOK) {
lock_path_created = lock_node + std::to_string(zoo_get_created_index(zk_handle));
}
// 获取当前所有子节点
std::vector<std::string> children;
rc = zoo_get_children(zk_handle, lock_path.c_str(), 0, nullptr);
if (rc == ZOK) {
// 模拟获取子节点列表
// 这里需要根据实际的ZooKeeper API获取子节点列表
}
// 检查是否获取到锁
if (lock_path_created == lock_path + "/" + children[0]) {
std::cout << "Lock acquired." << std::endl;
} else {
wait_for_lock(children[0]);
}
}
void wait_for_lock(const std::string& previous_lock) {
// 模拟等待锁释放
// 这里需要根据实际的ZooKeeper API实现等待逻辑
}
void release_lock() {
// 删除创建的锁节点
zoo_delete(zk_handle, lock_path.c_str(), -1);
std::cout << "Lock released." << std::endl;
}
private:
std::string zk_hosts;
std::string lock_path;
zhandle_t* zk_handle;
};
int main() {
std::string zk_hosts = "127.0.0.1:2181";
std::string lock_path = "/distributed_lock";
DistributedLock lock(zk_hosts, lock_path);
lock.acquire_lock();
std::this_thread::sleep_for(std::chrono::seconds(5)); // 持有锁5秒
lock.release_lock();
return 0;
}
四、分布式事务处理算法
分布式事务处理算法用于确保分布式系统中的事务一致性。常见的算法包括两阶段提交(2PC)和三阶段提交(3PC)。
两阶段提交(2PC)
两阶段提交算法分为准备阶段和提交阶段。在准备阶段,协调者向所有参与者发送准备消息,参与者准备好事务并回复准备完成。在提交阶段,协调者根据参与者的回复决定是否提交事务。
代码示例(C++):
#include <iostream>
#include <vector>
#include <memory>
class Participant {
public:
Participant(int participant_id) : participant_id(participant_id), ready(false) {}
bool prepare() {
// 模拟准备事务
ready = true;
return ready;
}
void commit() {
if (ready) {
std::cout << "Participant " << participant_id << " committed." << std::endl;
} else {
std::cout << "Participant " << participant_id << " aborted." << std::endl;
}
}
private:
int participant_id;
bool ready;
};
class Coordinator {
public:
Coordinator(std::vector<std::shared_ptr<Participant>>& participants) : participants(participants) {}
bool prepare_phase() {
for (const auto& participant : participants) {
if (!participant->prepare()) {
return false;
}
}
return true;
}
void commit_phase() {
for (const auto& participant : participants) {
participant->commit();
}
}
};
int main() {
std::vector<std::shared_ptr<Participant>> participants;
for (int i = 0; i < 3; ++i) {
participants.push_back(std::make_shared<Participant>(i));
}
Coordinator coordinator(participants);
if (coordinator.prepare_phase()) {
coordinator.commit_phase();
}
return 0;
}
五、负载均衡算法
负载均衡算法用于在分布式系统中合理分配任务,确保系统的高效运行。常见的算法包括轮询法、最少连接法和加权法。
最少连接法
最少连接法根据每个节点的当前连接数分配任务,优先分配给连接数最少的节点。
代码示例(C++):
#include <iostream>
#include <vector>
#include <algorithm>
class Node {
public:
Node(int node_id) : node_id(node_id), connections(0) {}
int get_connections() const {
return connections;
}
void assign_task() {
connections++;
}
private:
int node_id;
int connections;
};
class LoadBalancer {
public:
LoadBalancer(std::vector<Node*>& nodes) : nodes(nodes) {}
Node* get_least_connected_node() {
return *std::min_element(nodes.begin(), nodes.end(), [](const Node* a, const Node* b) {
return a->get_connections() < b->get_connections();
});
}
private:
std::vector<Node*> nodes;
};
int main() {
std::vector<Node*> nodes;
for (int i = 0; i < 3; ++i) {
nodes.push_back(new Node(i));
}
LoadBalancer load_balancer(nodes);
for (int i = 0; i < 5; ++i) {
Node* node = load_balancer.get_least_connected_node();
node->assign_task();
std::cout << "Task assigned to Node " << node->node_id << ". Connections: " << node->get_connections() << std::endl;
}
for (Node* node : nodes) {
delete node;
}
return 0;
}
这些分布式算法在不同的场景下具有各自的优势和适用性,可以根据具体需求选择合适的算法,并注意算法的效率和正确性。