青少年编程与数学 02-018 C++数据结构与算法 23课题、分布式算法

课题摘要
分布式算法是分布式系统中的核心,用于解决节点间通信、数据一致性、任务调度等问题。


一、一致性算法

一致性算法确保分布式系统中的所有节点对共享数据达成一致。常见的算法包括 Paxos 和 Raft。

Paxos 算法

Paxos 算法通过一系列步骤确保一致性,包括提议者、接受者和学习者三个角色。

代码示例(C++)

#include <iostream>
#include <vector>
#include <thread>
#include <mutex>
#include <random>
#include <memory>

class Node {
public:
    Node(int node_id) : node_id(node_id), proposal_number(0), promised_number(0), accepted_number(0), accepted_value(nullptr) {}

    bool prepare(int proposal_number) {
        std::lock_guard<std::mutex> lock(mutex_);
        if (proposal_number > promised_number) {
            promised_number = proposal_number;
            return true;
        }
        return false;
    }

    bool accept(int proposal_number, std::shared_ptr<std::string> value) {
        std::lock_guard<std::mutex> lock(mutex_);
        if (proposal_number >= promised_number) {
            promised_number = proposal_number;
            accepted_number = proposal_number;
            accepted_value = value;
            return true;
        }
        return false;
    }

private:
    int node_id;
    int proposal_number;
    int promised_number;
    int accepted_number;
    std::shared_ptr<std::string> accepted_value;
    std::mutex mutex_;
};

class Proposer {
public:
    Proposer(int proposer_id, std::vector<Node*>& nodes) : proposer_id(proposer_id), nodes(nodes) {}

    void propose(const std::string& value) {
        std::shared_ptr<std::string> value_ptr = std::make_shared<std::string>(value);
        int proposal_number = rand() % 100; // 生成随机提议编号
        int promises = 0;

        for (Node* node : nodes) {
            if (node->prepare(proposal_number)) {
                promises++;
            }
        }

        if (promises > nodes.size() / 2) {
            int acceptances = 0;
            for (Node* node : nodes) {
                if (node->accept(proposal_number, value_ptr)) {
                    acceptances++;
                }
            }

            if (acceptances > nodes.size() / 2) {
                std::cout << "Proposal " << proposal_number << " with value '" << *value_ptr << "' has been accepted." << std::endl;
            }
        }
    }

private:
    int proposer_id;
    std::vector<Node*> nodes;
};

int main() {
    std::vector<Node*> nodes;
    for (int i = 0; i < 5; ++i) {
        nodes.push_back(new Node(i));
    }

    Proposer proposer(1, nodes);
    proposer.propose("ValueA");

    for (Node* node : nodes) {
        delete node;
    }

    return 0;
}

二、领导者选举算法

领导者选举算法用于在分布式系统中选出一个领导者节点,负责协调和管理其他节点的操作。常见的算法包括 Bully 算法和环选举算法。

Bully 算法

Bully 算法的基本原理是:每个节点都有一个唯一的 ID,当某个节点检测到领导者失效时,它发起选举,发送选举消息给 ID 比自己大的所有节点。如果收到回复,说明有更高 ID 的节点在运行,自己不再参与选举。如果没有收到回复,则宣布自己为领导者。

代码示例(C++)

#include <iostream>
#include <vector>
#include <thread>
#include <mutex>
#include <condition_variable>

class Node {
public:
    Node(int node_id) : node_id(node_id), leader(-1) {}

    void election(std::vector<Node*>& nodes) {
        std::vector<Node*> higher_id_nodes;
        for (Node* node : nodes) {
            if (node->node_id > node_id) {
                higher_id_nodes.push_back(node);
            }
        }

        if (higher_id_nodes.empty()) {
            leader = node_id;
            std::cout << "Node " << node_id << " elected as leader." << std::endl;
        } else {
            for (Node* node : higher_id_nodes) {
                std::cout << "Node " << node_id << " sends election message to Node " << node->node_id << "." << std::endl;
                std::this_thread::sleep_for(std::chrono::seconds(1)); // 模拟发送消息
                if (node->leader == -1) {
                    leader = node_id;
                    std::cout << "Node " << node_id << " elected as leader." << std::endl;
                    break;
                }
            }
        }
    }

private:
    int node_id;
    int leader;
};

int main() {
    std::vector<Node*> nodes;
    for (int i = 0; i < 5; ++i) {
        nodes.push_back(new Node(i));
    }

    for (Node* node : nodes) {
        node->election(nodes);
    }

    for (Node* node : nodes) {
        delete node;
    }

    return 0;
}

三、分布式锁算法

分布式锁算法用于在分布式系统中协调对共享资源的访问,确保同一时间只有一个节点可以访问该资源。常见的算法包括基于 ZooKeeper 的分布式锁和基于 Redis 的分布式锁。

基于 ZooKeeper 的分布式锁

ZooKeeper 提供了分布式锁的实现,通过创建临时有序节点来实现锁的获取和释放。

代码示例(C++)

#include <iostream>
#include <string>
#include <memory>
#include <zookeeper/zookeeper.h>

class DistributedLock {
public:
    DistributedLock(const std::string& zk_hosts, const std::string& lock_path)
        : zk_hosts(zk_hosts), lock_path(lock_path), zk_handle(nullptr) {}

    ~DistributedLock() {
        if (zk_handle) {
            zookeeper_close(zk_handle);
        }
    }

    void acquire_lock() {
        zk_handle = zookeeper_init(zk_hosts.c_str(), nullptr, 30000, nullptr, nullptr, 0);
        std::string lock_node = lock_path + "/lock-";
        std::string lock_path_created;

        // 创建临时有序节点
        int rc = zoo_create(zk_handle, lock_node.c_str(), nullptr, 0, &ZOO_OPEN_ACL_UNSAFE, ZOO_EPHEMERAL | ZOO_SEQUENCE, nullptr, 0);
        if (rc == ZOK) {
            lock_path_created = lock_node + std::to_string(zoo_get_created_index(zk_handle));
        }

        // 获取当前所有子节点
        std::vector<std::string> children;
        rc = zoo_get_children(zk_handle, lock_path.c_str(), 0, nullptr);
        if (rc == ZOK) {
            // 模拟获取子节点列表
            // 这里需要根据实际的ZooKeeper API获取子节点列表
        }

        // 检查是否获取到锁
        if (lock_path_created == lock_path + "/" + children[0]) {
            std::cout << "Lock acquired." << std::endl;
        } else {
            wait_for_lock(children[0]);
        }
    }

    void wait_for_lock(const std::string& previous_lock) {
        // 模拟等待锁释放
        // 这里需要根据实际的ZooKeeper API实现等待逻辑
    }

    void release_lock() {
        // 删除创建的锁节点
        zoo_delete(zk_handle, lock_path.c_str(), -1);
        std::cout << "Lock released." << std::endl;
    }

private:
    std::string zk_hosts;
    std::string lock_path;
    zhandle_t* zk_handle;
};

int main() {
    std::string zk_hosts = "127.0.0.1:2181";
    std::string lock_path = "/distributed_lock";
    DistributedLock lock(zk_hosts, lock_path);
    lock.acquire_lock();
    std::this_thread::sleep_for(std::chrono::seconds(5)); // 持有锁5秒
    lock.release_lock();

    return 0;
}

四、分布式事务处理算法

分布式事务处理算法用于确保分布式系统中的事务一致性。常见的算法包括两阶段提交(2PC)和三阶段提交(3PC)。

两阶段提交(2PC)

两阶段提交算法分为准备阶段和提交阶段。在准备阶段,协调者向所有参与者发送准备消息,参与者准备好事务并回复准备完成。在提交阶段,协调者根据参与者的回复决定是否提交事务。

代码示例(C++)

#include <iostream>
#include <vector>
#include <memory>

class Participant {
public:
    Participant(int participant_id) : participant_id(participant_id), ready(false) {}

    bool prepare() {
        // 模拟准备事务
        ready = true;
        return ready;
    }

    void commit() {
        if (ready) {
            std::cout << "Participant " << participant_id << " committed." << std::endl;
        } else {
            std::cout << "Participant " << participant_id << " aborted." << std::endl;
        }
    }

private:
    int participant_id;
    bool ready;
};

class Coordinator {
public:
    Coordinator(std::vector<std::shared_ptr<Participant>>& participants) : participants(participants) {}

    bool prepare_phase() {
        for (const auto& participant : participants) {
            if (!participant->prepare()) {
                return false;
            }
        }
        return true;
    }

    void commit_phase() {
        for (const auto& participant : participants) {
            participant->commit();
        }
    }
};

int main() {
    std::vector<std::shared_ptr<Participant>> participants;
    for (int i = 0; i < 3; ++i) {
        participants.push_back(std::make_shared<Participant>(i));
    }

    Coordinator coordinator(participants);
    if (coordinator.prepare_phase()) {
        coordinator.commit_phase();
    }

    return 0;
}

五、负载均衡算法

负载均衡算法用于在分布式系统中合理分配任务,确保系统的高效运行。常见的算法包括轮询法、最少连接法和加权法。

最少连接法

最少连接法根据每个节点的当前连接数分配任务,优先分配给连接数最少的节点。

代码示例(C++)

#include <iostream>
#include <vector>
#include <algorithm>

class Node {
public:
    Node(int node_id) : node_id(node_id), connections(0) {}

    int get_connections() const {
        return connections;
    }

    void assign_task() {
        connections++;
    }

private:
    int node_id;
    int connections;
};

class LoadBalancer {
public:
    LoadBalancer(std::vector<Node*>& nodes) : nodes(nodes) {}

    Node* get_least_connected_node() {
        return *std::min_element(nodes.begin(), nodes.end(), [](const Node* a, const Node* b) {
            return a->get_connections() < b->get_connections();
        });
    }

private:
    std::vector<Node*> nodes;
};

int main() {
    std::vector<Node*> nodes;
    for (int i = 0; i < 3; ++i) {
        nodes.push_back(new Node(i));
    }

    LoadBalancer load_balancer(nodes);
    for (int i = 0; i < 5; ++i) {
        Node* node = load_balancer.get_least_connected_node();
        node->assign_task();
        std::cout << "Task assigned to Node " << node->node_id << ". Connections: " << node->get_connections() << std::endl;
    }

    for (Node* node : nodes) {
        delete node;
    }

    return 0;
}

这些分布式算法在不同的场景下具有各自的优势和适用性,可以根据具体需求选择合适的算法,并注意算法的效率和正确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值