【分布式】小白看Ring算法 - 03

相关系列

【分布式】NCCL部署与测试 - 01
【分布式】入门级NCCL多机并行实践 - 02
【分布式】小白看Ring算法 - 03
【分布式】大模型分布式训练入门与实践 - 04

概述

NCCL(NVIDIA Collective Communications Library)是由NVIDIA开发的一种用于多GPU间通信的库。NCCL的RING算法是NCCL库中的一种通信算法,用于在多个GPU之间进行环形通信。

RING算法的基本思想是将多个GPU连接成一个环形结构,每个GPU与相邻的两个GPU进行通信。数据沿着环形结构传递,直到到达发送方的位置。这样的环形结构可以有效地利用GPU之间的带宽,提高通信的效率。

RING算法的步骤如下:

数据拷贝
数据沿着环形路径传递
传输完成
进行下一轮通信/结束通信过程
初始化
通信缓冲区
等待
接收方

Scatter-Reduce

以Scatter-Reduce为例,假设有4张GPU,RANK_NUM=4。
则需要根据RANK_NUM把每张CPU划分为4个chunk。
为什么要这么划分?

在 NCCL 中,划分 chunk 的数量与 GPU 的数量相关联,这是因为 chunk 的目的是将大的消息划分为多个小的数据块,以便并行处理和降低通信的延迟。这种划分通常会基于 GPU 的数量,以确保每个 GPU 可以处理到一部分数据块,从而提高整体的通信效率。

  1. 并行性: 划分 chunk 可以增加通信的并行性。每个 GPU 处理自己的数据块,不同的 GPU 可以并行地执行通信操作,从而提高整体的吞吐量。
  2. 减少延迟: 较小的数据块通常可以更快地传输,因此通过划分 chunk,可以减少每个通信操作的延迟。这对于一些对通信延迟敏感的应用程序是至关重要的。
  3. 资源分配: NCCL 可能会根据 GPU 的数量来分配适当的资源,例如内存等。通过划分 chunk,可以更好地管理这些资源。
  4. Load Balancing: 均衡负载是分布式系统中的一个关键问题。通过根据 GPU 的数量划分 chunk,可以更容易地实现负载均衡,确保每个 GPU 处理的工作量相对均匀。

划分了chunk以后,我们一次RING的通路将会走通4块GPU,每次只传输一块chunk的数据。这样需要走很多次通路才能把所有数据传输完。
假如 ringIx=0,第一次循环到第三次循环时:
在这里插入图片描述

我们将绿色视为这次循环需要传输的数据。
数据ABCD在不同的GPU中流通。
最终达到以下情况,scatter-reduce就完成了:
在这里插入图片描述
将图中蓝色部分输出,就完成了一次ring算法下的Scatter-Reduce。

当然,如果要做All-Reduce,此时不需要继续按照原来的规则计算类,理论上只需要再算一次All-Gather,就能把蓝色的块分发给其他几块卡。All-Reduce的相关讲解网络上很多。此处就不讲了。

NCCL代码流程

1
1
1
1
2
2
2
2
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10
10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
rank0:fillInfo
bootstrap AllGather
rank1:fillInfo
rank2:fillInfo
rank3:fillInfo
rank0:getSystem
rank1:getSystem
rank2:getSystem
rank3:getSystem
rank0:computePath
rank1:computePath
rank2:computePath
rank3:computePath
rank0:search channel
rank1:search channel
rank2:search channel
rank3:search channel
bootstrap AllGather
rank0:connect
rank1:connect
rank2:connect
rank3:connect
rank0:setupChannel
rank1:setupChannel
rank2:setupChannel
rank3:setupChannel
rank0:p2pSetup
rank1:p2pSetup
rank2:p2pSetup
rank3:p2pSetup
rank0:tuneModel
rank1:tuneModel
rank2:tuneModel
rank3:tuneModel
rank0:p2pChannel
rank1:p2pChannel
rank2:p2pChannel
rank3:p2pChannel
bootstrap IntraNodeBarrier
rank0:NetProxy
rank1:NetProxy
rank2:NetProxy
rank3:NetProxy

fillInfo:
这段代码在init.cc中

static ncclResult_t fillInfo(struct ncclComm* comm, struct ncclPeerInfo* info, uint64_t commHash) {
  info->rank = comm->rank;
  CUDACHECK(cudaGetDevice(&info->cudaDev));
  info->hostHash=getHostHash()+commHash;
  info->pidHash=getPidHash()+commHash;

  // Get the device MAJOR:MINOR of /dev/shm so we can use that
  // information to decide whether we can use SHM for inter-process
  // communication in a container environment
  struct stat statbuf;
  SYSCHECK(stat("/dev/shm", &statbuf), "stat");
  info->shmDev = statbuf.st_dev;

  info->busId = comm->busId;

  NCCLCHECK(ncclGpuGdrSupport(&info->gdrSupport));
  return ncclSuccess;
}

这段代码的目的是为了获取和存储与通信相关的信息,以便在NCCL通信中使用。其中包括设备标识、主机哈希、进程ID哈希、共享内存设备标识、总线ID以及对GDR的支持情况等。

在initTransportsRank中,搜索完信息并作第一次AllGather, 收集所有通信节点的信息。
然后再为通信组分配额外的内存,以存储每个通信节点的信息(包括一个额外的用于表示CollNet root的位置)。
遍历节点和复制信息时,需要检查是否存在相同主机哈希和总线ID的重复GPU。如果是,发出警告并返回ncclInvalidUsage错误。

后面的一系列过程就是计算路径,然后这里涉及一些搜索算法,通常会将BFS搜索到的路径都存在一个位置,选择更优的路径。
搜索时也会根据实际情况判断选择ring算法或者tree算法。
搜索内容可能是无穷的,因此NCCL设置了一个超时时间,超过该时间则终端搜索。
完成路径的计算后,再做一次AllGather。

来到scatter-reduce的实现部分:

		size_t realChunkSize;
      if (Proto::Id == NCCL_PROTO_SIMPLE) {
        realChunkSize = min(chunkSize, divUp(size-gridOffset, nChannels));
        realChunkSize = roundUp(realChunkSize, (nthreads-WARP_SIZE)*sizeof(uint64_t)/sizeof(T));
      }
      else if (Proto::Id == NCCL_PROTO_LL)
        realChunkSize = size-gridOffset < loopSize ? args->coll.lastChunkSize : chunkSize;
      else if (Proto::Id == NCCL_PROTO_LL128)
        realChunkSize = min(divUp(size-gridOffset, nChannels*minChunkSizeLL128)*minChunkSizeLL128, chunkSize);
      realChunkSize = int(realChunkSize);

      ssize_t chunkOffset = gridOffset + bid*int(realChunkSize);

这里涉及了NCCL协议的通信模式:
一共有三种,分别是NCCL_PROTO_SIMPLE、NCCL_PROTO_LL和NCCL_PROTO_LL128。

NCCL_PROTO_SIMPLE:

描述: 使用简单的通信协议。
差异点: 计算realChunkSize时,采用了一些特殊的逻辑,其中min(chunkSize, divUp(size-gridOffset, nChannels))用于确定实际的块大小,并通过roundUp调整为合适的大小。这可能涉及到性能和资源的考虑,以及对通信模式的调整。

NCCL_PROTO_LL:

描述: 使用连续链表(Linked List,LL)的通信协议。
差异点: 在计算realChunkSize时,首先检查size-gridOffset < loopSize条件,如果为真,则使用args->coll.lastChunkSize,否则使用默认的chunkSize。这可能与LL协议的特性有关,具体考虑了循环的情况。
NCCL_PROTO_LL128:

描述: 使用连续链表的通信协议,每次传输128字节。
差异点: 计算realChunkSize时,采用了min(divUp(size-gridOffset, nChannels*minChunkSizeLL128)*minChunkSizeLL128, chunkSize)的逻辑。这考虑了128字节的限制,以及对通信块大小的一些限制。
总体来说,这三种协议模式的区别主要体现在计算realChunkSize的逻辑上,这可能受到性能、资源利用、通信模式等方面的不同考虑。具体选择哪种协议模式通常取决于系统的特性和应用场景的需求。

Protocol ModeDescriptionCalculation of realChunkSize
NCCL_PROTO_SIMPLEUses a simple communication protocol.realChunkSize = roundUp(min(chunkSize, divUp(size-gridOffset, nChannels)), (nthreads-WARP_SIZE)*sizeof(uint64_t)/sizeof(T))
NCCL_PROTO_LLUses a linked list (LL) communication protocol.realChunkSize = size-gridOffset < loopSize ? args->coll.lastChunkSize : chunkSize
NCCL_PROTO_LL128Uses a linked list (LL) communication protocol, with each transfer involving 128 bytes.realChunkSize = min(divUp(size-gridOffset, nChannels*minChunkSizeLL128)*minChunkSizeLL128, chunkSize)

最后是正式计算部分:

 /////////////// begin ReduceScatter steps ///////////////
      ssize_t offset;
      int nelem = min(realChunkSize, size-chunkOffset);
      int rankDest;

      // step 0: push data to next GPU
      rankDest = ringRanks[nranks-1];
      offset = chunkOffset + rankDest * size;
      prims.send(offset, nelem);

      // k-2 steps: reduce and copy to next GPU
      for (int j=2; j<nranks; ++j) {
        rankDest = ringRanks[nranks-j];
        offset = chunkOffset + rankDest * size;
        prims.recvReduceSend(offset, nelem);
      }

      // step k-1: reduce this buffer and data, which will produce the final result
      rankDest = ringRanks[0];
      offset = chunkOffset + rankDest * size;
      prims.recvReduceCopy(offset, chunkOffset, nelem, /*postOp=*/true);

ssize_t offset; int nelem = min(realChunkSize, size-chunkOffset); int rankDest;:

offset 是一个偏移量变量,用于指定数据在通信缓冲区中的位置。
nelem 表示每次操作的元素个数,取 realChunkSize 和 size-chunkOffset 的较小值。
rankDest 是目标GPU的排名。

第一步:将数据推送到下一个GPU。
计算目标GPU的排名 rankDest 和在通信缓冲区中的偏移量 offset。
调用 prims.send 函数,将数据从当前GPU发送到目标GPU。
// k-2 steps: reduce and copy to next GPU:

第2到第k-1步:
将数据在环形路径上经过各个GPU节点,依次进行Reduce操作,并将结果复制到下一个GPU。
通过循环,依次计算目标GPU的排名 rankDest 和在通信缓冲区中的偏移量 offset。
调用 prims.recvReduceSend 函数,接收数据并执行Reduce操作,然后将结果发送到下一个GPU。

第k-1步:
将最后一个GPU的数据进行Reduce操作,得到最终的结果。
计算目标GPU的排名 rankDest 和在通信缓冲区中的偏移量 offset。
调用 prims.recvReduceCopy 函数,接收数据并执行Reduce操作,然后将结果复制到指定的位置,最终产生最终的ReduceScatter结果。

在实际运行中,我们在host端的代码只是规定计算流,当这些定义好的原子操作加入到stream中去以后,就由固定的流来分配实际运行的情况了。

加入Barria,在本地(intra-node)执行一个屏障操作,确保同一节点内的所有GPU都达到了同步点。

 // Compute time models for algorithm and protocol combinations
  NCCLCHECK(ncclTopoTuneModel(comm, minCompCap, maxCompCap, &treeGraph, &ringGraph, &collNetGraph));

  // Compute nChannels per peer for p2p
  NCCLCHECK(ncclTopoComputeP2pChannels(comm));

  if (ncclParamNvbPreconnect()) {
    // Connect p2p when using NVB path
    int nvbNpeers;
    int* nvbPeers;
    NCCLCHECK(ncclTopoGetNvbGpus(comm->topo, comm->rank, &nvbNpeers, &nvbPeers));
    for (int r=0; r<nvbNpeers; r++) {
      int peer = nvbPeers[r];
      int delta = (comm->nRanks + (comm->rank-peer)) % comm->nRanks;
      for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
        int channelId = (delta+comm->p2pChannels[c]) % comm->p2pnChannels;
        if (comm->channels[channelId].peers[peer].recv[0].connected == 0) { // P2P uses only 1 connector
          comm->connectRecv[peer] |= (1<<channelId);
        }
      }
      delta = (comm->nRanks - (comm->rank-peer)) % comm->nRanks;
      for (int c=0; c<comm->p2pnChannelsPerPeer; c++) {
        int channelId = (delta+comm->p2pChannels[c]) % comm->p2pnChannels;
        if (comm->channels[channelId].peers[peer].send[0].connected == 0) { // P2P uses only 1 connector
          comm->connectSend[peer] |= (1<<channelId);
        }
      }
    }
    NCCLCHECK(ncclTransportP2pSetup(comm, NULL, 0));
    free(nvbPeers);
  }

  NCCLCHECK(ncclCommSetIntraProc(comm, intraProcRank, intraProcRanks, intraProcRank0Comm));

  /* Local intra-node barrier */
  NCCLCHECK(bootstrapBarrier(comm->bootstrap, comm->intraNodeGlobalRanks, intraNodeRank, intraNodeRanks, (int)intraNodeRank0pidHash));

  if (comm->nNodes) NCCLCHECK(ncclProxyCreate(comm));

以上就是整个scatter-reduce的流程。

相关系列

【分布式】NCCL部署与测试 - 01
【分布式】入门级NCCL多机并行实践 - 02
【分布式】小白看Ring算法 - 03
【分布式】大模型分布式训练入门与实践 - 04

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

canmoumou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值