几何光学学习笔记(6)- 2.4 球面反射镜

本文介绍了面反射镜的物像位置公式,并给出了球面反射镜的成像倍率及拉赫不变量的推导过程。重点分析了球面反射镜的成像规律及其特殊情况下成像特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.面反射镜的物像位置公式

将n’=-n代入式 n ′ l ′ − n l = n ′ − n r {n'\over{l'}} -{n\over{l}}={n'-n\over r} lnln=rnn可得:
1 l ′ + 1 l = 2 r {1\over{l'}}+{1\over{l}}={2\over r} l1+l1=r2
在这里插入图片描述

2.球面反射镜的成像倍率

将n’=-n代入倍率公式中可得球面反射镜的成像倍率:
{ b = − l ′ l a = − b 2 g = − 1 b \begin{cases} b= { {-l'} \over {l} } \\ a = { -b^2 } \\ g= { {-1} \over {b} } \\ \end{cases} b=lla=b2g=b1
由上式可知球面反射镜的轴向倍率 a为负值,当物体沿光轴移动时,像总以相反的方向沿轴移动。但是在偶数次反射时,轴向倍率为正。

但物体处于球面反射镜的球心时l=l’=r,可得:
b = − 1 , a = − 1 , g = 1 b= -1 , a = -1 , g= 1 b=1,a=1,g=1
由反射定理可知l’= -I ,即反射光线与入射光线方向间的夹角为 π-2I 。当物点位于球面反射镜的球心时,由三角光路计算公式知 I= I’ =0 ,反射光线和入射光线间夹角则为 π 。即通过球心的光线被反射镜原路反射回来,或者说球面反射镜曲率中心处物点发出的任何光线经反射后仍会聚于该点,球面反射镜对其曲率中心为等光程面。

3. 球面反射镜的拉赫不变量

将n’=-n代入拉赫不变量公式可得:

J = u y = − u ′ y ′ J=uy=-u'y' J=uy=uy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carifee.

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值