阅读(基于深度残差网络的图像超分辨率重建)

本文探讨了神经网络训练时间长及高频细节恢复不足的问题,提出了一种利用残差学习的图像超分辨率重建算法。通过残差网络加速学习与收敛,并结合分数阶傅里叶变换增强细节恢复。实验部分展示了改进的网络结构和残差单元在提升图像重建质量上的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:作者针对神经网络训练时间长,重建高频细节缺失等问题,构建了使用残差学习的的图像超分算法。网络通过残差学习,加快网络的学习和收敛速度,在残差网络基础上,加入了分数阶傅里叶变换来最大限度的恢复图片的细节信息。

 网络结构。作者在VDSR的基础上,改进残差模块,加入分数阶傅里叶变换。这里图像经过分数阶傅里叶变换相当于图像经过了不同截止频率的高通滤波器。进一步提取图像的细节信息。

作者认为BN层的存在会对卷积层的特征进行正则化,对训练速度和最后的精度都有影响。所以作者提出改进了残差单元。

实验部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值