引言
深度卷积神经网络在各种计算机视觉任务上显示出出色的性能,例如图像识别 [30,13],对象检测 [43,444] 和语义分割 [4]。传统的cnn通常需要大量的参数和浮点运算 (FLOPs) 来达到令人满意的精度,例如ResNet-50 [16] 具有大约25.6m的参数,并且需要4.1B FLOPs来处理大小为224 × 224的图像。因此,深度神经网络设计的最新趋势是探索移动设备 (例如智能手机和自动驾驶汽车) 可接受性能的便携式和高效网络架构。
由ResNet-50中的第一残差组生成的一些特征图的可视化,其中用相同颜色的框注释三个相似的特征图对示例。可以通过廉价操作 (用spanners表示) 转换另一个来近似获得该对中的一个特征图。
特征图中的冗余可能是深度神经网络效果好的重要特征。我们没有避免多余的特征图,而是倾向于以经济高效的方式得到它们。
在本文中,我们提出了一种新颖的Ghost模块,通过使用更少的参数来生成更多的特征图。具体来说,深度神经网络中的普通卷积层将分为两部分。