GhostNet: More Features from Cheap Operations

GhostNet是一种新的深度学习模型,通过Ghost模块利用廉价操作生成更多特征图,减少了参数和计算复杂度,适用于移动设备。Ghost模块通过普通卷积生成固有特征,再通过线性运算增加通道,降低了对资源的需求,同时保持了类似性能。
摘要由CSDN通过智能技术生成

引言

深度卷积神经网络在各种计算机视觉任务上显示出出色的性能,例如图像识别 [30,13],对象检测 [43,444] 和语义分割 [4]。传统的cnn通常需要大量的参数和浮点运算 (FLOPs) 来达到令人满意的精度,例如ResNet-50 [16] 具有大约25.6m的参数,并且需要4.1B FLOPs来处理大小为224 × 224的图像。因此,深度神经网络设计的最新趋势是探索移动设备 (例如智能手机和自动驾驶汽车) 可接受性能的便携式和高效网络架构。

 由ResNet-50中的第一残差组生成的一些特征图的可视化,其中用相同颜色的框注释三个相似的特征图对示例。可以通过廉价操作 (用spanners表示) 转换另一个来近似获得该对中的一个特征图。

特征图中的冗余可能是深度神经网络效果好的重要特征。我们没有避免多余的特征图,而是倾向于以经济高效的方式得到它们。

在本文中,我们提出了一种新颖的Ghost模块通过使用更少的参数来生成更多的特征图。具体来说,深度神经网络中的普通卷积层将分为两部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值