RepVGG:让VGG风格的ConvNet再次伟大起来

本文介绍了RepVGG,一种通过结构重参数化技术解决VGG型ConvNet在训练和推理阶段效率问题的方法。在多分支结构中训练以获取高性能,然后转换为简单的单路径模型以提高推理速度和内存利用率。通过Conv2d+BN融合实验,RepVGG旨在平衡模型性能与效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

经典的卷积神经网络(ConvNet)VGG [31]在图像识别中取得了巨大的成功,其简单的架构由conv、ReLU和池化的堆栈组成。随着Inception [33,34,32,19]、ResNet [12]和DenseNet [17]的出现,许多研究兴趣转向了设计良好的架构,使得模型越来越复杂。一些最近的架构基于自动[44,29,23]或手动[28]架构搜索,或搜索的复合缩放策略[35]。

尽管许多复杂的ConvNet比简单的ConvNet具有更高的精度,但缺点也很明显

  1. 复杂的多分支设计(例如,ResNet中的跳跃连接和Inception中的分支级联)使得模型难以实现和定制,减慢了推理速度,降低了内存利用率
  2. 一些组件(例如,Xception [3]和MobileNets [16,30]中的深度卷积和ShuffleNet [24,41]中的通道重排增加了存储器访问成本,并且缺乏对各种设备的支持。由于影响推理速度的因素太多,浮点运算(FLOPs)的数量并不能精确地反映实际速度。

由于多分支结构的优点都是用于训练ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值