Pytorch深度学习实战教程(三):UNet模型训练

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

一、前言

本文属于Pytorch深度学习语义分割系列教程。
该系列文章的内容有:
Pytorch的基本使用
语义分割算法讲解

二、项目背景

深度学习算法,我飞就是我们解决一个问题的方法。选择什么样的网络去训练,进行什么样的预处理,采用什么Loss和优化方法,都是根据具体的任务而定的。
所以,让我们先看一下今天的任务。
在这里插入图片描述
没错,就是UNet论文中的经典任务:医学图像分割。
简单描述一下这个任务:如上图,给一张细胞结构图,我们要把每个细胞互相分割开来。
这个训练数据只有30张,分辨率512x512,这些图片是果蝇的电镜图。
下面开始准备训练模型。

三、UNet训练

想要训练一个深度学习模型,可以简单分为三个步骤:
数据加载:数据怎么加载,标签怎么定义,用什么数据增强方法,都是这一步进行。
模型选择:模型见上一篇文章。
算法选择:也就是我们选什么loss,用什么优化算法。

1. 数据加载

这一步,可以做很多事情,说白了,无非就是图片怎么加载,标签怎么定义,为了增加算法的鲁棒性或者增加数据集,可以做一些数据增强的操作。
既然是处理数据,那么我们先看下数据都是什么样的,再决定怎么处理。
数据分为训练集和测试集,各30张,训练集有标签,测试集没有标签。
数据加载要做哪些处理,是根据任务和数据集而决定的,对于我们的分割任务,不用做太多处理,但由于数据量很少,仅30张,我们可以使用一些数据增强方法来扩大我们的数据集。
Pytorch给我们提供了一个方法,方便我们加载数据,我们可以使用这个框架,去加载我们的数据。看下伪代码:

# You shoule build your custom dataset as below
class CustomDataset(torch.utils.data.Dataset):
	def __init__(self):
		# TODO
		# 1. Initialize file paths or a list of filee names
		pass
		
	def __getitem__(self, index):
		# TODO
		# 1. Read one data from file (e.g using numpy.fromfile, PIL.Image.open).
		# 2. Preprocess the data (e.g. torchvision. Transform)
		# 3. Return a data pair (e.g. image and label)
		pass
	
	def __len__(self):
		# You should change 0 to the total size of your dataset
		return 0
# You can then use the prebuilt data loader
custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset, batch_size=64, shuffle=True)

这是一个标准的模板,我们就使用这个模板,来加载数据,定义标签,以及进行数据增强。
创建一个dataset.py文件,编写代码如下:

import torch
from torch.utils.data import Dataset
import cv2
import os
import random

class ISBI_Loader(Dataset):
	def __init__(self, data_path):
		# 初始化函数,读取所有data_path下的图片
		self.data_path = data_path
		self.imgs_path = glob.glob(os.path.join(data_path, 'iamge/*.png))
	def augment(self, image, flipCode):
		# 使用cv2.flip进行数据增强,flipCode为1水平翻转,0垂直翻转,-1水平+垂直翻转
		flip = cv2.flip(image, flipCode)
		return flip
	def __getitem__(self, index):
		# 根据index读取图片
		image_path = self.imgs_path[index]
		# 根据image_path生成label_path
		label_path = image_path.replace('image', 'label')
		# 读取训练图片和标签图片
		image = cv2.imdecode(np.fromfile(image_path), -1)
		label = cv2.imdecode(np.fromfile(label_path), -1)
		# 将数据转为单通道的图片
		image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
		label = cv2.cvtColor(label, cv2.COLOR_BGR2GRAY)
		image = image.reshape(1, image.shape[0], image.shape[1])
		label = label.shape(1, label.shape[0[, label.shape[1])
		# 处理标签,将像素值为255的改为1, 归一化
		if label.max() > 1:
			label = label / 255
		# 随机进行数据增强,为2时不做处理
		flipCode = random.choice([-1, 0, 1, 2])
		if filpCode != 2:
			image = self.augment(image, flipCpde)
			label = self.augment(label, flipCode)
		return image, label
def __len__(self):
	# 返回训练集大小
	return len(self.imgs_path)

if __name__ == "__main__":
	isbi_dataset = ISBI_Loader("data/tarin/")
	print("数据个数:", len(isbi_dataset))
	train_loader = torch.utils.data.DataLoader(dataset = isbi_dataset, batch_size=2, shuffle=True)
	for image, label in train_loader:
		print(image.shape)			

解释一下代码:
__init__函数是这个类的初始化函数,根据指定的图片路径,读取所有图片数据,存放到self.imgs_path列表中。
__len__函数可以返回数据的多少,这个类实例化吼,通过len()函数调用。
__getitem__函数是数据获取函数,在这个函数里你可以写数据怎么读,怎么处理,并且可以一些数据预处理、数据增强都可以在这里进行。我这里的处理很简单,只是将图片读取,并处理成单通道图片。同时,因为label的图片像素点是0和255,因此需要除以255,变成0和1。同时,随机进行了数据增强。
augment函数是定义的数据增强函数,怎么处理都行,我这里只是进行了简单的旋转操作。
在这个类中,你不用进行一些打乱数据集的操作,也不用管怎么按照batchsize读取数据。因为实例化这个类后,我们可以用torch.utils.data.DataLoader方法指定batchsize的大小,决定是否打乱数据。
Pytorch提供给我们的DataLoader很强大,我们甚至可以指定使用多少个进程加载数据,数据是否加载到CUDA内存中等高级用法,本文不作详细讲解。

2. 模型选择

我们对UNet网络进行了微调,完全按照论文的结构,模型输出的尺寸会稍微小于图片输入的尺寸,如果使用论文的网络结构需要在结果输出后,做一个resize操作。为了省去这一步,我们可以修改网络,使网络的输出尺寸正好等于图片的输入尺寸。
创建unet_parts文件,编写如下代码:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DoubleConv(nn.Module):
	"""(convolution => [BN] => ReLU) * 2"""
	def __init__(self, in_channels, out_channels):
		super().__init__()
		self.double_conv = nn.Sequential(
		nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), 
		nn.BatchNorm2d(out_channels), 
		nn.ReLU(inplace=True), 
		nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), 
		nn.BatchNorm2d(out_channels), 
		nn.ReLU(inplace=True)
		)
	def forward(self, x):
		return self.double_conv(x)
	
class Down(nn.Module):
	"""Downscaling with maxpool then double conv"""
	def __init__(self, in_channels, out_channels):
		super().__init__()
		self.maxpool_conv = nn.Sequential(
		nn.MaxPool2d(2), 
		DoubleConv(in_channels, out_channels)
		)
	def forward(self, x):
		return self.maxpool_conv(x)

class Up(nn.Module):
	"""Upscaling then double conv"""
	def __init__(self, in_channels, out_channels, bilinear=True):
		super().__init__()
		if bilinear:
			self.up = nn.Upsample(scale_factor=2 mode='bilinear', align_corners=True)
		else:
			self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2)
		self.conv = DoubleConv(in_channels, out_channels)
	def forward(self, x1, x2):
		x1 = self.up(x1)
		# input is CHW
		diffY = torch.tensor(x2.size()[2] - x1.size()[2])
		diffX = torch.tensor(x2.size()[3] - x1.size()[3])
		x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, 
							diffY // 2. diffY // 2])
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)
 
 
class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
 
    def forward(self, x):
        return self.conv(x)
		

创建unet_model.py文件,编写如下代码:

""" Full assembly of the parts to form the complete network """
"""Refer https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py"""
 
import torch.nn.functional as F
 
from .unet_parts import *
 
class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear
 
        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        self.down4 = Down(512, 512)
        self.up1 = Up(1024, 256, bilinear)
        self.up2 = Up(512, 128, bilinear)
        self.up3 = Up(256, 64, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, n_classes)
 
    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits
 
if __name__ == '__main__':
    net = UNet(n_channels=3, n_classes=1)
    print(net)

这样调整过后,网络的输出尺寸就与图片的输入尺寸相同了。

3. 算法选择

选择什么Loss很重要,Loss选择的好坏,都会影响算法拟合数据的效果。
选择什么Loss也是根据任务而决定的。我们今天的任务,只需要分割出细胞边缘,也就是一个很简单的二分类任务,所以我们可以使用BCEWithLogitsLoss。
啥事BCEWithLogitsLoss?BCEWithLogitsLoss是Pytorch提供的用来计算二分类交叉熵的函数。
它的公式是:
在这里插入图片描述
它就是Logistic回归的损失函数。它利用的是SIgmoid函数阈值在[0, 1]这个特性来进行分类的。
目标函数,也就是Loss确定好了,怎么去优化这个目标呢?
最简单的方法就是,我们耳熟能详的梯度下降算法,逐渐逼近局部的极值。
但是这种简单的优化算法,求解速度慢,也就是想找到最优解,费劲儿。
各种优化算法,本质上其实都是梯度下降,例如最常规的SGD,就是基于梯度下降改进的随机梯度下降算法,Momentum就是引入了动量的SGD,以指数衰减的形式累计历史梯度。
除了这些最基本的优化算法,还有自适应参数的优化算法。这类算法最大的特点就是,每个参数有不同的学习率,在整个学习过程中自适应这些学习率,从而达到更好的收敛效果。
本文就是选择了一种自适应的优化算法RMSProp。
由于篇幅有限,这里就不再扩展。要弄懂RMSProp,你得先知道什么是AdaGrad,因为RMSProp是基于AdaGrad的改进。
比如RMSProp更高级的优化算法也有,比如大名鼎鼎的Adam,它可以看做是修正后的Momentum+RMSProp算法。
总之,对于初学者,你只要知道RMSProp是一种自适应的优化算法,比较高级就行了。
下面,我们就可以开始写训练UNet的代码了,创建train.py编写如下代码:

from model.unet_model import UNet
from utils.dataset import ISBI_Loader
from torch import optim
import torch.nn as nn
import torch
 
def train_net(net, device, data_path, epochs=40, batch_size=1, lr=0.00001):
    # 加载训练集
    isbi_dataset = ISBI_Loader(data_path)
    train_loader = torch.utils.data.DataLoader(dataset=isbi_dataset,
                                               batch_size=batch_size, 
                                               shuffle=True)
    # 定义RMSprop算法
    optimizer = optim.RMSprop(net.parameters(), lr=lr, weight_decay=1e-8, momentum=0.9)
    # 定义Loss算法
    criterion = nn.BCEWithLogitsLoss()
    # best_loss统计,初始化为正无穷
    best_loss = float('inf')
    # 训练epochs次
    for epoch in range(epochs):
        # 训练模式
        net.train()
        # 按照batch_size开始训练
        for image, label in train_loader:
            optimizer.zero_grad()
            # 将数据拷贝到device中
            image = image.to(device=device, dtype=torch.float32)
            label = label.to(device=device, dtype=torch.float32)
            # 使用网络参数,输出预测结果
            pred = net(image)
            # 计算loss
            loss = criterion(pred, label)
            print('Loss/train', loss.item())
            # 保存loss值最小的网络参数
            if loss < best_loss:
                best_loss = loss
                torch.save(net.state_dict(), 'best_model.pth')
            # 更新参数
            loss.backward()
            optimizer.step()
 
if __name__ == "__main__":
    # 选择设备,有cuda用cuda,没有就用cpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # 加载网络,图片单通道1,分类为1。
    net = UNet(n_channels=1, n_classes=1)
    # 将网络拷贝到deivce中
    net.to(device=device)
    # 指定训练集地址,开始训练
    data_path = "data/train/"
    train_net(net, device, data_path)

为了让工程更加清晰简洁,我们创建一个model文件夹,里面放模型相关的代码,也就是我们的网络结构哦代码,unet_parts.py和unet_model.py。
创建一个utils文件夹,里面放工具相关的代码,比如数据加载工具dataset.py。
这种模块化的管理,大大提高了代码的可维护性。
train.py放在工程根目录即可,简单解释下代码。
由于数据就30张,我们就部分训练集和验证集了,我们保存训练集loss最低的网络参数作为最佳模型参数。

4. 预测

模型训练好了,我们可以用它在测试集上看下效果。
在工程根目录创建predict.py文件,比阿尼写如下代码:

import glob
import numpy as np
import torch
import os
import cv2
from model.unet_model import UNet

if __name__ == "__main__":
    # 选择设备,有cuda用cuda,没有就用cpu
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # 加载网络,图片单通道,分类为1。
    net = UNet(n_channels=1, n_classes=1)
    # 将网络拷贝到deivce中
    net.to(device=device)
    # 加载模型参数
    net.load_state_dict(torch.load('best_model.pth', map_location=device))
    # 测试模式
    net.eval()
    # 读取所有图片路径
    tests_path = glob.glob('data/test/*.png')
    # 遍历所有图片
    for test_path in tests_path:
        # 保存结果地址
        save_res_path = test_path.split('.')[0] + '_res.png'
        # 读取图片
        img = cv2.imread(test_path)
        # 转为灰度图
        img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        # 转为batch为1,通道为1,大小为512*512的数组
        img = img.reshape(1, 1, img.shape[0], img.shape[1])
        # 转为tensor
        img_tensor = torch.from_numpy(img)
        # 将tensor拷贝到device中,只用cpu就是拷贝到cpu中,用cuda就是拷贝到cuda中。
        img_tensor = img_tensor.to(device=device, dtype=torch.float32)
        # 预测
        pred = net(img_tensor)
        # 提取结果
        pred = np.array(pred.data.cpu()[0])[0]
        # 处理结果
        pred[pred >= 0.5] = 255
        pred[pred < 0.5] = 0
        # 保存图片
        cv2.imwrite(save_res_path, pred)

运行完后,你可以在data/test目录下,看到预测效果:
在这里插入图片描述

总结

本文主要讲解了训练模型的三个步骤:数据加载、模型选择、算法选择。
这是一个简单的额例子,训练正常的视觉任务,要复杂很多。比如在训练模型的时候,需要根据模型在验证集上的准确率选择保存哪个模型;需要支持tensorboard方便我们观察loss收敛情况等。

  • 5
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值