傅里叶变换对推导

考虑傅里叶级数的复数形式,即

                                                                               f(t) = \sum\limits_{p = - \infty }^\infty {​{C_p}{e^{ip\omega t}}} dt,\omega = \frac{​{2\pi }}{T} (1)

系数{​{C_p}}

                                                                    {C_p}{\rm{ = }}\frac{1}{T}\int_{ - T/2}^{T/2} {f(t){e^{ - ip\omega t}}dt\begin{array}{*{20}{c}} {}&{(p = 0, \pm 1, \pm 2,...)} \end{array}}(2)

式中,T = \frac{​{2\pi }}{\omega }为激励函数的周期。傅里叶级数式(1)和式(2)提供了有关周期函数f(t)的频率组成依据。令p\omega = {\omega _p},有\Delta {\omega _p} = (p + 1)\omega - p\omega = \omega = \frac{​{2\pi }}{T},将傅里叶级数展开式(1)和式(2)中的p\omega{\omega _p}代替,写成

                                                                 f(t) = \sum\limits_{p = - \infty }^\infty {\frac{1}{T}(T{C_p}){e^{ip\omega t}}} dt = \frac{1}{​{2\pi }}\sum\limits_{p = - \infty }^\infty {(T{C_p}){e^{ip\omega t}}} \Delta {\omega _p}(3)

                                                                 T{C_p}{\rm{ = }}\int_{ - T/2}^{T/2} {f(t){e^{ - i{\omega _p}t}}} dt(4)

T \to \infty ,\Delta {\omega _p} \to 0时,离散频率{\omega _p}就成为连续频率\omega,将T{C_p}记为\omega的函数F(\omega ),称为激励的频谱函数。上面两式转化为傅里叶变换公式,即

                                                               f(t) = \frac{1}{​{2\pi }}\int_{ - \infty }^\infty {F(\omega ){e^{i\omega t}}} d\omega(5)

                                                               F(\omega ){\rm{ = }}\int_{ - \infty }^\infty {f(t)} {e^{ - i\omega t}}dt(6)

积分式(6)称为关于函数f(t)的傅里叶变换,它给出了f(t)的连续频谱函数。积分式(5)称为关于函数F(\omega )的傅里叶逆变换,它将非周期函数f(t)表示为频率为\omega、幅值为F(\omega )d\omega的简谐分量的无穷叠加。f(t)F(\omega )共称为傅里叶变换对。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值