1、预备知识
实变函数内积:
<
f
1
,
f
2
>
=
∫
t
1
t
2
f
1
(
t
)
f
2
(
t
)
d
t
<f_1,f_2>=\int_{t_1}^{t_2}f_1(t)f_2(t)dt
<f1,f2>=∫t1t2f1(t)f2(t)dt
正交函数定义:如果两个函数之间内积为0,称之为正交函数
正交函数集合:在一定区间额你的一些函数,两两之间具有正交关系。他们自身的内积(模的平方)是不为0的
完备的正交函数集合:集合外不存在函数与集合内函数正交,任何函数
f
(
t
)
f(t)
f(t)均可表示为集合内函数的线性组合
因此,频率不同的三角函数相乘在一个周期内的积分必定为0。
2、傅里叶级数推导
定义:满足狄利克雷条件时,任何一个周期信号都可以展开成傅里叶级数。
狄利克雷条件:
- 在一周期内,连续或只有有限个第一类间断点。
- 在一周期内,极大值和极小值的数目应是有限的。
- 在一周期内,信号是绝对可积的。
现假设一函数
f
(
t
)
f(t)
f(t)由一个直流分量和若干余弦函数组成,即:
f
(
t
)
=
c
0
+
∑
n
=
1
∞
c
n
cos
(
n
ω
t
+
φ
)
f(t)=c_0+\sum_{n=1}^{\infty}c_n\cos(n\omega t+\varphi)
f(t)=c0+n=1∑∞cncos(nωt+φ)
利用和差化积公式,变形为:
f
(
t
)
=
c
0
+
∑
n
=
1
∞
[
c
n
cos
φ
cos
(
n
ω
t
)
−
c
n
sin
φ
sin
(
n
ω
t
)
]
f(t)=c_0+\sum_{n=1}^{\infty}[c_n\cos\varphi\cos(n\omega t)-c_n\sin\varphi\sin(n\omega t)]
f(t)=c0+n=1∑∞[cncosφcos(nωt)−cnsinφsin(nωt)]
设:
a
n
=
c
n
cos
φ
,
b
n
=
−
c
n
sin
φ
a_n=c_n\cos\varphi,b_n=-c_n\sin\varphi
an=cncosφ,bn=−cnsinφ
得到:
f
(
t
)
=
c
0
+
∑
n
=
1
∞
[
a
n
cos
(
n
ω
t
)
+
b
n
sin
(
n
ω
t
)
]
f(t)=c_0+\sum_{n=1}^{\infty}[a_n\cos(n\omega t)+b_n\sin(n\omega t)]
f(t)=c0+n=1∑∞[ancos(nωt)+bnsin(nωt)]
上式即是傅里叶级数的展开式,可以看出,若要将一个周期信号展开为傅里叶级数形式,实际上就是确定确定
a
n
,
b
n
a_n,b_n
an,bn
对傅里叶级数展开式的两边同时乘以一个
sin
(
k
ω
t
)
\sin(k\omega t)
sin(kωt),并对它们在一个周期内进行积分,有:
∫
0
T
f
(
t
)
sin
(
k
ω
t
)
d
t
=
∫
0
T
c
0
sin
(
k
ω
t
)
d
t
+
∫
0
T
sin
(
k
ω
t
)
∑
n
=
1
∞
[
a
n
cos
(
n
ω
t
)
+
b
n
sin
(
n
ω
t
)
]
d
t
\int_0^Tf(t)\sin(k\omega t)dt=\int_0^Tc_0\sin(k\omega t)dt+\int_0^T\sin(k\omega t)\sum_{n=1}^\infty[a_n\cos(n\omega t)+b_n\sin(n\omega t)]dt
∫0Tf(t)sin(kωt)dt=∫0Tc0sin(kωt)dt+∫0Tsin(kωt)n=1∑∞[ancos(nωt)+bnsin(nωt)]dt
由预备知识可知,频率不同的三角函数相乘在一个周期内的积分必定为0,因此,仅有
k
=
n
k=n
k=n时不为0,上式进一步化简为:
∫
0
T
f
(
t
)
sin
(
k
ω
t
)
d
t
=
b
n
∫
0
T
sin
(
n
ω
t
)
2
d
t
=
b
n
T
2
\int_0^Tf(t)\sin(k\omega t)dt=b_n\int_0^T\sin(n\omega t)^2dt=b_n\frac{T}{2}
∫0Tf(t)sin(kωt)dt=bn∫0Tsin(nωt)2dt=bn2T
从而得出:
b
n
=
2
T
∫
0
T
f
(
t
)
sin
(
n
ω
t
)
d
t
b_n=\frac{2}{T}\int_0^Tf(t)\sin(n\omega t)dt
bn=T2∫0Tf(t)sin(nωt)dt
同理可以得出
a
n
=
2
T
∫
0
T
f
(
t
)
cos
(
n
ω
t
)
d
t
a_n=\frac{2}{T}\int_0^Tf(t)\cos(n\omega t)dt
an=T2∫0Tf(t)cos(nωt)dt
同时,可以得到傅里叶级数与幅值相位之间的关系:
c
n
=
a
n
2
+
b
n
2
φ
=
arctan
(
−
b
n
a
n
)
c_n=\sqrt{a_n^2+b_n^2}\\ \varphi=\arctan(-\frac{b_n}{a_n})
cn=an2+bn2φ=arctan(−anbn)
3、欧拉公式
定义:
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta}=\cos\theta+i\sin\theta
eiθ=cosθ+isinθ
欧拉公式是通过泰勒公式推导得出的:
e
x
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
⋯
sin
x
=
x
−
1
3
!
x
3
+
1
5
!
x
5
+
⋯
cos
x
=
1
−
1
2
!
x
2
+
1
4
!
x
4
+
⋯
e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots\\ \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots\\ \cos x = 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots
ex=1+x+2!1x2+3!1x3+⋯sinx=x−3!1x3+5!1x5+⋯cosx=1−2!1x2+4!1x4+⋯
将
x
=
i
θ
x=i\theta
x=iθ代入
e
x
e^x
ex可得:
e
i
θ
=
i
+
i
θ
+
(
i
θ
)
2
2
!
+
(
i
θ
)
3
3
!
+
⋯
=
1
+
i
θ
−
θ
2
2
!
−
i
θ
3
3
!
+
⋯
=
(
1
−
θ
2
2
!
+
θ
4
4
!
−
⋯
)
+
i
(
θ
−
θ
3
3
!
+
θ
5
5
!
+
⋯
)
=
cos
θ
+
i
sin
θ
\begin{aligned} e^i\theta&=i+i\theta+\frac{(i\theta)^2}{2!}+\frac{(i\theta)^3}{3!}+\cdots\\ &=1+i\theta-\frac{\theta^2}{2!}-\frac{i\theta^3}{3!}+\cdots\\ &=(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-\cdots)+i(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}+\cdots)\\ &=\cos\theta+i\sin\theta \end{aligned}
eiθ=i+iθ+2!(iθ)2+3!(iθ)3+⋯=1+iθ−2!θ2−3!iθ3+⋯=(1−2!θ2+4!θ4−⋯)+i(θ−3!θ3+5!θ5+⋯)=cosθ+isinθ
欧拉公式将复数、指数函数与三角函数相互联系起来。如果定义一个复平面,
e
i
θ
e^{i\theta}
eiθ表示,一个绕原点旋转的圆,如下图所示
令
θ
=
ω
t
=
2
π
T
t
\theta=\omega t=\frac{2\pi}{T}t
θ=ωt=T2πt
则,欧拉公式可写成如下形式
e
i
ω
t
=
cos
(
ω
t
)
+
i
sin
(
ω
t
)
e^{i\omega t}=\cos(\omega t)+i\sin(\omega t)
eiωt=cos(ωt)+isin(ωt)
3、复变函数到傅里叶级数
可以定义一组三角函数为:
cos
(
n
ω
t
)
=
e
i
n
ω
t
+
e
−
i
n
ω
t
2
sin
(
n
ω
t
)
=
e
i
n
ω
t
−
e
−
i
n
ω
t
2
\cos(n\omega t)=\frac{e^{in\omega t}+e^{-in\omega t}}{2}\\ \sin(n\omega t)=\frac{e^{in\omega t}-e^{-in\omega t}}{2}
cos(nωt)=2einωt+e−inωtsin(nωt)=2einωt−e−inωt
将它们带入傅里叶级数展开式,可得:
f
(
t
)
=
c
0
+
∑
n
=
1
∞
[
a
n
e
i
n
ω
t
+
e
−
i
n
ω
t
2
+
b
n
e
i
n
ω
t
−
e
−
i
n
ω
t
2
]
f(t)=c_0+\sum_{n=1}^\infty\left[a_n\frac{e^{in\omega t}+e^{-in\omega t}}{2}+b_n\frac{e^{in\omega t}-e^{-in\omega t}}{2}\right]
f(t)=c0+n=1∑∞[an2einωt+e−inωt+bn2einωt−e−inωt]
进一步化简:
f
(
t
)
=
c
0
+
∑
n
=
1
∞
[
(
a
n
−
i
b
n
)
2
e
i
n
ω
t
+
(
a
n
+
i
b
n
)
2
e
−
i
n
ω
t
]
f(t)=c_0+\sum_{n=1}^\infty\left[\frac{(a_n-ib_n)}{2}e^{in\omega t}+\frac{(a_n+ib_n)}{2}e^{-in\omega t}\right]
f(t)=c0+n=1∑∞[2(an−ibn)einωt+2(an+ibn)e−inωt]
又因为
a
−
n
=
2
T
∫
0
T
f
(
t
)
cos
(
−
n
ω
t
)
d
t
=
a
n
b
−
n
=
2
T
∫
0
T
f
(
t
)
sin
(
−
n
ω
t
)
d
t
=
−
b
n
a_{-n}=\frac{2}{T}\int_0^Tf(t)\cos(-n\omega t)dt=a_n\\ b_{-n}=\frac{2}{T}\int_0^Tf(t)\sin(-n\omega t)dt=-b_n
a−n=T2∫0Tf(t)cos(−nωt)dt=anb−n=T2∫0Tf(t)sin(−nωt)dt=−bn
故
f
(
t
)
=
c
0
+
∑
n
=
1
∞
[
(
a
n
−
i
b
n
)
2
e
i
n
ω
t
+
(
a
n
−
i
b
−
n
)
2
e
−
i
n
ω
t
]
f(t)=c_0+\sum_{n=1}^\infty\left[\frac{(a_n-ib_n)}{2}e^{in\omega t}+\frac{(a_n-ib_{-n})}{2}e^{-in\omega t}\right]
f(t)=c0+n=1∑∞[2(an−ibn)einωt+2(an−ib−n)e−inωt]
即
f
(
t
)
=
c
0
+
∑
n
=
1
∞
(
a
n
−
i
b
n
)
2
e
i
n
ω
t
+
∑
n
=
−
∞
−
1
(
a
n
−
i
b
−
n
)
2
e
−
i
n
ω
t
f(t)=c_0+\sum_{n=1}^\infty\frac{(a_n-ib_n)}{2}e^{in\omega t}+\sum_{n=-\infty}^{-1}\frac{(a_n-ib_{-n})}{2}e^{-in\omega t}
f(t)=c0+n=1∑∞2(an−ibn)einωt+n=−∞∑−12(an−ib−n)e−inωt
这里
c
0
c_0
c0为直流分量,对应频率为0的情况,即
c
0
c_0
c0为
n
=
0
n=0
n=0的情况,故
f
(
t
)
=
∑
n
=
−
∞
∞
a
n
−
i
b
n
2
e
i
n
ω
t
f(t)=\sum_{n=-\infty}^{\infty}\frac{a_n-ib_n}{2}e^{in\omega t}
f(t)=n=−∞∑∞2an−ibneinωt
设
A
n
=
a
n
−
i
b
n
2
A_n=\frac{a_n-ib_n}{2}
An=2an−ibn,则
f
(
t
)
=
∑
n
=
−
∞
∞
A
n
e
i
n
ω
t
f(t)=\sum_{n=-\infty}^{\infty}A_ne^{in\omega t}
f(t)=n=−∞∑∞Aneinωt
这就是复数形式的傅里叶级数,在在两边同时乘以一个
e
−
i
k
ω
t
e^{-ik\omega t}
e−ikωt,并对它们在一个周期内进行积分,得到:
∫
0
T
f
(
t
)
e
−
i
k
ω
t
d
t
=
∫
0
T
∑
n
=
−
∞
+
∞
A
n
e
i
(
n
−
k
)
ω
t
d
t
\int_0^Tf(t)e^{-ik\omega t}dt=\int_0^T\sum_{n=-\infty}^{+\infty}A_ne^{i(n-k)\omega t}dt
∫0Tf(t)e−ikωtdt=∫0Tn=−∞∑+∞Anei(n−k)ωtdt
当
n
≠
k
n\neq k
n=k时,积分结果必定为0,因此:
∫
0
T
f
(
t
)
e
−
i
n
ω
t
d
t
=
A
n
T
\int_0^Tf(t)e^{-in\omega t}dt=A_nT
∫0Tf(t)e−inωtdt=AnT
从而得出
A
n
A_n
An的求法
A
n
=
1
T
∫
0
T
f
(
t
)
e
−
i
n
ω
t
d
t
A_n=\frac{1}{T}\int_0^Tf(t)e^{-in\omega t}dt
An=T1∫0Tf(t)e−inωtdt
通过求
A
n
A_n
An的模,可求得该频率波的幅值的一半
∣
A
n
∣
=
1
2
a
n
2
+
b
n
2
=
1
2
c
n
|A_n|=\frac{1}{2}\sqrt{a_n^2+b_n^2}=\frac{1}{2}c_n
∣An∣=21an2+bn2=21cn
而通过对其虚部和实部反正切,就可以求得该频率段波的相位。
4、周期离散时间傅里叶变换
傅里叶级数适用于周期时间连续且无限长度的信号处理,因此我们需要一个能够处理周期离散时间信号的变化公式。
现假设我们对周期连续信号等间距采样,同时保证采样的结果也是周期性的,设离散时间的采样样本为
x
[
t
]
x[t]
x[t],其周期为
T
T
T,那么,其频率为
2
π
/
T
2\pi/T
2π/T,满足:
x
[
t
]
=
x
[
t
+
k
T
]
x[t]=x[t+kT]
x[t]=x[t+kT]
其中
k
k
k为整数,设
t
=
<
T
>
t=<T>
t=<T>表示一个周期内所有的采样点,那么根据复数形式的傅里叶级数,有
x
[
t
]
=
∑
n
=
<
T
>
A
n
e
i
n
ω
t
x[t]=\sum_{n=<T>}A_ne^{in\omega t}
x[t]=n=<T>∑Aneinωt
其中
A
n
A_n
An就是周期离散傅里叶级数的系数,同样的方法,两边同时乘以
e
−
i
k
ω
t
e^{-ik\omega t}
e−ikωt,有:
x
[
t
]
e
−
i
k
ω
t
=
∑
n
=
<
T
>
A
n
e
i
n
ω
t
e
−
i
k
ω
t
x[t]e^{-ik\omega t}=\sum_{n=<T>}A_ne^{in\omega t}e^{-ik\omega t}
x[t]e−ikωt=n=<T>∑Aneinωte−ikωt
再同时对两边进行
T
T
T项上求和,得到:
∑
t
=
<
T
>
x
[
t
]
e
−
i
k
ω
t
=
∑
t
=
<
T
>
∑
n
=
<
T
>
A
n
e
i
(
n
−
k
)
ω
t
\sum_{t=<T>}x[t]e^{-ik\omega t}=\sum_{t=<T>}\sum_{n=<T>}A_ne^{i(n-k)\omega t}
t=<T>∑x[t]e−ikωt=t=<T>∑n=<T>∑Anei(n−k)ωt
同样,当
n
≠
k
n\neq k
n=k时,周期的累加和为0,因此,上式变为:
∑
t
=
<
T
>
x
[
t
]
e
−
i
k
ω
t
=
T
A
n
\sum_{t=<T>}x[t]e^{-ik\omega t}=TA_n
t=<T>∑x[t]e−ikωt=TAn
从而,得到
A
n
=
1
T
∑
t
=
<
T
>
x
[
t
]
e
−
i
n
ω
t
A_n=\frac{1}{T}\sum_{t=<T>}x[t]e^{-in\omega t}
An=T1t=<T>∑x[t]e−inωt
5、非周期离散时间傅里叶变化
假设一个离散时间信号,其只在区间
[
1
,
3
]
[1,3]
[1,3]上有值,其余范围均为0,那么,我们可以把它当作一个周期无穷大的信号,套用第四节所得公式,有
A
n
=
1
3
∑
t
=
1
3
x
[
t
]
e
−
i
n
ω
t
A_n=\frac{1}{3}\sum_{t=1}^3x[t]e^{-in\omega t}
An=31t=1∑3x[t]e−inωt
因为在其他区间的值均为0,也可写成
KaTeX parse error: Undefined control sequence: \inftyx at position 34: …um_{t=-\infty}^\̲i̲n̲f̲t̲y̲x̲[t]e^{-in\omega…
如果将区间拓展到某一信号有连续的
N
N
N个值,那么得到一个更加通用的公式
A
n
=
1
N
∑
t
=
−
∞
∞
x
[
t
]
e
−
i
n
ω
t
A_n=\frac{1}{N}\sum_{t=-\infty}^\infty x[t]e^{-in\omega t}
An=N1t=−∞∑∞x[t]e−inωt
设
X
(
e
i
ω
)
=
∑
t
=
−
∞
∞
x
[
t
]
e
−
i
ω
t
X(e^{i\omega})=\sum_{t=-\infty}^\infty x[t]e^{-i\omega t}
X(eiω)=t=−∞∑∞x[t]e−iωt
则
A
n
=
1
N
X
(
e
i
ω
n
)
A_n=\frac{1}{N}X(e^{i\omega n})
An=N1X(eiωn)
将上式代回,有
x
[
t
]
=
1
N
∑
t
=
−
∞
∞
X
(
e
i
ω
n
)
e
i
n
ω
t
x[t]=\frac{1}{N}\sum_{t=-\infty}^\infty X(e^{i\omega n})e^{in\omega t}
x[t]=N1t=−∞∑∞X(eiωn)einωt
因为
N
=
2
π
/
ω
N=2\pi/\omega
N=2π/ω,则
x
[
t
]
=
1
2
π
∑
t
=
−
∞
∞
X
(
e
i
ω
n
)
e
i
n
ω
t
ω
x[t]=\frac{1}{2\pi}\sum_{t=-\infty}^\infty X(e^{i\omega n})e^{in\omega t}\omega
x[t]=2π1t=−∞∑∞X(eiωn)einωtω
随着周期趋近于无穷大,
ω
\omega
ω趋近于无穷小,那么,上式就从累加变成了积分,且因为
X
(
e
i
ω
n
)
e
i
n
ω
t
ω
X(e^{i\omega n})e^{in\omega t}\omega
X(eiωn)einωtω的周期为
2
π
2\pi
2π,且其仅在周期内有值,于是,上式也随之变为了
x
[
t
]
=
1
2
π
∫
0
2
π
X
(
e
i
ω
n
)
e
i
n
ω
t
d
ω
x[t]=\frac{1}{2\pi}\int_{0}^{2\pi} X(e^{i\omega n})e^{in\omega t}d\omega
x[t]=2π1∫02πX(eiωn)einωtdω