傅里叶变换推导

1、预备知识

实变函数内积 < f 1 , f 2 > = ∫ t 1 t 2 f 1 ( t ) f 2 ( t ) d t <f_1,f_2>=\int_{t_1}^{t_2}f_1(t)f_2(t)dt <f1,f2>=t1t2f1(t)f2(t)dt
正交函数定义:如果两个函数之间内积为0,称之为正交函数
正交函数集合:在一定区间额你的一些函数,两两之间具有正交关系。他们自身的内积(模的平方)是不为0的
完备的正交函数集合:集合外不存在函数与集合内函数正交,任何函数 f ( t ) f(t) f(t)均可表示为集合内函数的线性组合

因此,频率不同的三角函数相乘在一个周期内的积分必定为0。

2、傅里叶级数推导

定义:满足狄利克雷条件时,任何一个周期信号都可以展开成傅里叶级数。

狄利克雷条件

  1. 在一周期内,连续或只有有限个第一类间断点。
  2. 在一周期内,极大值和极小值的数目应是有限的。
  3. 在一周期内,信号是绝对可积的。

现假设一函数 f ( t ) f(t) f(t)由一个直流分量和若干余弦函数组成,即:
f ( t ) = c 0 + ∑ n = 1 ∞ c n cos ⁡ ( n ω t + φ ) f(t)=c_0+\sum_{n=1}^{\infty}c_n\cos(n\omega t+\varphi) f(t)=c0+n=1cncos(t+φ)
利用和差化积公式,变形为:
f ( t ) = c 0 + ∑ n = 1 ∞ [ c n cos ⁡ φ cos ⁡ ( n ω t ) − c n sin ⁡ φ sin ⁡ ( n ω t ) ] f(t)=c_0+\sum_{n=1}^{\infty}[c_n\cos\varphi\cos(n\omega t)-c_n\sin\varphi\sin(n\omega t)] f(t)=c0+n=1[cncosφcos(t)cnsinφsin(t)]
设: a n = c n cos ⁡ φ , b n = − c n sin ⁡ φ a_n=c_n\cos\varphi,b_n=-c_n\sin\varphi an=cncosφbn=cnsinφ
得到:
f ( t ) = c 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ] f(t)=c_0+\sum_{n=1}^{\infty}[a_n\cos(n\omega t)+b_n\sin(n\omega t)] f(t)=c0+n=1[ancos(t)+bnsin(t)]
上式即是傅里叶级数的展开式,可以看出,若要将一个周期信号展开为傅里叶级数形式,实际上就是确定确定 a n , b n a_n,b_n an,bn
对傅里叶级数展开式的两边同时乘以一个 sin ⁡ ( k ω t ) \sin(k\omega t) sin(t),并对它们在一个周期内进行积分,有:
∫ 0 T f ( t ) sin ⁡ ( k ω t ) d t = ∫ 0 T c 0 sin ⁡ ( k ω t ) d t + ∫ 0 T sin ⁡ ( k ω t ) ∑ n = 1 ∞ [ a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ] d t \int_0^Tf(t)\sin(k\omega t)dt=\int_0^Tc_0\sin(k\omega t)dt+\int_0^T\sin(k\omega t)\sum_{n=1}^\infty[a_n\cos(n\omega t)+b_n\sin(n\omega t)]dt 0Tf(t)sin(t)dt=0Tc0sin(t)dt+0Tsin(t)n=1[ancos(t)+bnsin(t)]dt
由预备知识可知,频率不同的三角函数相乘在一个周期内的积分必定为0,因此,仅有 k = n k=n k=n时不为0,上式进一步化简为:
∫ 0 T f ( t ) sin ⁡ ( k ω t ) d t = b n ∫ 0 T sin ⁡ ( n ω t ) 2 d t = b n T 2 \int_0^Tf(t)\sin(k\omega t)dt=b_n\int_0^T\sin(n\omega t)^2dt=b_n\frac{T}{2} 0Tf(t)sin(t)dt=bn0Tsin(t)2dt=bn2T
从而得出:
b n = 2 T ∫ 0 T f ( t ) sin ⁡ ( n ω t ) d t b_n=\frac{2}{T}\int_0^Tf(t)\sin(n\omega t)dt bn=T20Tf(t)sin(t)dt
同理可以得出
a n = 2 T ∫ 0 T f ( t ) cos ⁡ ( n ω t ) d t a_n=\frac{2}{T}\int_0^Tf(t)\cos(n\omega t)dt an=T20Tf(t)cos(t)dt
同时,可以得到傅里叶级数与幅值相位之间的关系:
c n = a n 2 + b n 2 φ = arctan ⁡ ( − b n a n ) c_n=\sqrt{a_n^2+b_n^2}\\ \varphi=\arctan(-\frac{b_n}{a_n}) cn=an2+bn2 φ=arctan(anbn)

3、欧拉公式

定义
e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta+i\sin\theta eiθ=cosθ+isinθ
欧拉公式是通过泰勒公式推导得出的:
e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯ cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots\\ \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots\\ \cos x = 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots ex=1+x+2!1x2+3!1x3+sinx=x3!1x3+5!1x5+cosx=12!1x2+4!1x4+
x = i θ x=i\theta x=iθ代入 e x e^x ex可得:
e i θ = i + i θ + ( i θ ) 2 2 ! + ( i θ ) 3 3 ! + ⋯ = 1 + i θ − θ 2 2 ! − i θ 3 3 ! + ⋯ = ( 1 − θ 2 2 ! + θ 4 4 ! − ⋯   ) + i ( θ − θ 3 3 ! + θ 5 5 ! + ⋯   ) = cos ⁡ θ + i sin ⁡ θ \begin{aligned} e^i\theta&=i+i\theta+\frac{(i\theta)^2}{2!}+\frac{(i\theta)^3}{3!}+\cdots\\ &=1+i\theta-\frac{\theta^2}{2!}-\frac{i\theta^3}{3!}+\cdots\\ &=(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-\cdots)+i(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}+\cdots)\\ &=\cos\theta+i\sin\theta \end{aligned} eiθ=i+iθ+2!(iθ)2+3!(iθ)3+=1+iθ2!θ23!iθ3+=(12!θ2+4!θ4)+i(θ3!θ3+5!θ5+)=cosθ+isinθ
欧拉公式将复数、指数函数与三角函数相互联系起来。如果定义一个复平面, e i θ e^{i\theta} eiθ表示,一个绕原点旋转的圆,如下图所示
在这里插入图片描述

θ = ω t = 2 π T t \theta=\omega t=\frac{2\pi}{T}t θ=ωt=T2πt
则,欧拉公式可写成如下形式
e i ω t = cos ⁡ ( ω t ) + i sin ⁡ ( ω t ) e^{i\omega t}=\cos(\omega t)+i\sin(\omega t) et=cos(ωt)+isin(ωt)

3、复变函数到傅里叶级数

可以定义一组三角函数为:
cos ⁡ ( n ω t ) = e i n ω t + e − i n ω t 2 sin ⁡ ( n ω t ) = e i n ω t − e − i n ω t 2 \cos(n\omega t)=\frac{e^{in\omega t}+e^{-in\omega t}}{2}\\ \sin(n\omega t)=\frac{e^{in\omega t}-e^{-in\omega t}}{2} cos(t)=2einωt+einωtsin(t)=2einωteinωt
将它们带入傅里叶级数展开式,可得:
f ( t ) = c 0 + ∑ n = 1 ∞ [ a n e i n ω t + e − i n ω t 2 + b n e i n ω t − e − i n ω t 2 ] f(t)=c_0+\sum_{n=1}^\infty\left[a_n\frac{e^{in\omega t}+e^{-in\omega t}}{2}+b_n\frac{e^{in\omega t}-e^{-in\omega t}}{2}\right] f(t)=c0+n=1[an2einωt+einωt+bn2einωteinωt]
进一步化简:
f ( t ) = c 0 + ∑ n = 1 ∞ [ ( a n − i b n ) 2 e i n ω t + ( a n + i b n ) 2 e − i n ω t ] f(t)=c_0+\sum_{n=1}^\infty\left[\frac{(a_n-ib_n)}{2}e^{in\omega t}+\frac{(a_n+ib_n)}{2}e^{-in\omega t}\right] f(t)=c0+n=1[2(anibn)einωt+2(an+ibn)einωt]
又因为
a − n = 2 T ∫ 0 T f ( t ) cos ⁡ ( − n ω t ) d t = a n b − n = 2 T ∫ 0 T f ( t ) sin ⁡ ( − n ω t ) d t = − b n a_{-n}=\frac{2}{T}\int_0^Tf(t)\cos(-n\omega t)dt=a_n\\ b_{-n}=\frac{2}{T}\int_0^Tf(t)\sin(-n\omega t)dt=-b_n an=T20Tf(t)cos(t)dt=anbn=T20Tf(t)sin(t)dt=bn

f ( t ) = c 0 + ∑ n = 1 ∞ [ ( a n − i b n ) 2 e i n ω t + ( a n − i b − n ) 2 e − i n ω t ] f(t)=c_0+\sum_{n=1}^\infty\left[\frac{(a_n-ib_n)}{2}e^{in\omega t}+\frac{(a_n-ib_{-n})}{2}e^{-in\omega t}\right] f(t)=c0+n=1[2(anibn)einωt+2(anibn)einωt]

f ( t ) = c 0 + ∑ n = 1 ∞ ( a n − i b n ) 2 e i n ω t + ∑ n = − ∞ − 1 ( a n − i b − n ) 2 e − i n ω t f(t)=c_0+\sum_{n=1}^\infty\frac{(a_n-ib_n)}{2}e^{in\omega t}+\sum_{n=-\infty}^{-1}\frac{(a_n-ib_{-n})}{2}e^{-in\omega t} f(t)=c0+n=12(anibn)einωt+n=12(anibn)einωt
这里 c 0 c_0 c0为直流分量,对应频率为0的情况,即 c 0 c_0 c0 n = 0 n=0 n=0的情况,故
f ( t ) = ∑ n = − ∞ ∞ a n − i b n 2 e i n ω t f(t)=\sum_{n=-\infty}^{\infty}\frac{a_n-ib_n}{2}e^{in\omega t} f(t)=n=2anibneinωt
A n = a n − i b n 2 A_n=\frac{a_n-ib_n}{2} An=2anibn,则
f ( t ) = ∑ n = − ∞ ∞ A n e i n ω t f(t)=\sum_{n=-\infty}^{\infty}A_ne^{in\omega t} f(t)=n=Aneinωt
这就是复数形式的傅里叶级数,在在两边同时乘以一个 e − i k ω t e^{-ik\omega t} eikωt,并对它们在一个周期内进行积分,得到:
∫ 0 T f ( t ) e − i k ω t d t = ∫ 0 T ∑ n = − ∞ + ∞ A n e i ( n − k ) ω t d t \int_0^Tf(t)e^{-ik\omega t}dt=\int_0^T\sum_{n=-\infty}^{+\infty}A_ne^{i(n-k)\omega t}dt 0Tf(t)eikωtdt=0Tn=+Anei(nk)ωtdt
n ≠ k n\neq k n=k时,积分结果必定为0,因此:
∫ 0 T f ( t ) e − i n ω t d t = A n T \int_0^Tf(t)e^{-in\omega t}dt=A_nT 0Tf(t)einωtdt=AnT
从而得出 A n A_n An的求法
A n = 1 T ∫ 0 T f ( t ) e − i n ω t d t A_n=\frac{1}{T}\int_0^Tf(t)e^{-in\omega t}dt An=T10Tf(t)einωtdt
通过求 A n A_n An的模,可求得该频率波的幅值的一半
∣ A n ∣ = 1 2 a n 2 + b n 2 = 1 2 c n |A_n|=\frac{1}{2}\sqrt{a_n^2+b_n^2}=\frac{1}{2}c_n An=21an2+bn2 =21cn
而通过对其虚部和实部反正切,就可以求得该频率段波的相位。

4、周期离散时间傅里叶变换

傅里叶级数适用于周期时间连续且无限长度的信号处理,因此我们需要一个能够处理周期离散时间信号的变化公式。
现假设我们对周期连续信号等间距采样,同时保证采样的结果也是周期性的,设离散时间的采样样本为 x [ t ] x[t] x[t],其周期为 T T T,那么,其频率为 2 π / T 2\pi/T 2π/T,满足:
x [ t ] = x [ t + k T ] x[t]=x[t+kT] x[t]=x[t+kT]
其中 k k k为整数,设 t = < T > t=<T> t=<T>表示一个周期内所有的采样点,那么根据复数形式的傅里叶级数,有
x [ t ] = ∑ n = < T > A n e i n ω t x[t]=\sum_{n=<T>}A_ne^{in\omega t} x[t]=n=<T>Aneinωt
其中 A n A_n An就是周期离散傅里叶级数的系数,同样的方法,两边同时乘以 e − i k ω t e^{-ik\omega t} eikωt,有:
x [ t ] e − i k ω t = ∑ n = < T > A n e i n ω t e − i k ω t x[t]e^{-ik\omega t}=\sum_{n=<T>}A_ne^{in\omega t}e^{-ik\omega t} x[t]eikωt=n=<T>Aneinωteikωt
再同时对两边进行 T T T项上求和,得到:
∑ t = < T > x [ t ] e − i k ω t = ∑ t = < T > ∑ n = < T > A n e i ( n − k ) ω t \sum_{t=<T>}x[t]e^{-ik\omega t}=\sum_{t=<T>}\sum_{n=<T>}A_ne^{i(n-k)\omega t} t=<T>x[t]eikωt=t=<T>n=<T>Anei(nk)ωt
同样,当 n ≠ k n\neq k n=k时,周期的累加和为0,因此,上式变为:
∑ t = < T > x [ t ] e − i k ω t = T A n \sum_{t=<T>}x[t]e^{-ik\omega t}=TA_n t=<T>x[t]eikωt=TAn
从而,得到
A n = 1 T ∑ t = < T > x [ t ] e − i n ω t A_n=\frac{1}{T}\sum_{t=<T>}x[t]e^{-in\omega t} An=T1t=<T>x[t]einωt

5、非周期离散时间傅里叶变化

假设一个离散时间信号,其只在区间 [ 1 , 3 ] [1,3] [1,3]上有值,其余范围均为0,那么,我们可以把它当作一个周期无穷大的信号,套用第四节所得公式,有
A n = 1 3 ∑ t = 1 3 x [ t ] e − i n ω t A_n=\frac{1}{3}\sum_{t=1}^3x[t]e^{-in\omega t} An=31t=13x[t]einωt
因为在其他区间的值均为0,也可写成
KaTeX parse error: Undefined control sequence: \inftyx at position 34: …um_{t=-\infty}^\̲i̲n̲f̲t̲y̲x̲[t]e^{-in\omega…
如果将区间拓展到某一信号有连续的 N N N个值,那么得到一个更加通用的公式
A n = 1 N ∑ t = − ∞ ∞ x [ t ] e − i n ω t A_n=\frac{1}{N}\sum_{t=-\infty}^\infty x[t]e^{-in\omega t} An=N1t=x[t]einωt

X ( e i ω ) = ∑ t = − ∞ ∞ x [ t ] e − i ω t X(e^{i\omega})=\sum_{t=-\infty}^\infty x[t]e^{-i\omega t} X(e)=t=x[t]et

A n = 1 N X ( e i ω n ) A_n=\frac{1}{N}X(e^{i\omega n}) An=N1X(eiωn)
将上式代回,有
x [ t ] = 1 N ∑ t = − ∞ ∞ X ( e i ω n ) e i n ω t x[t]=\frac{1}{N}\sum_{t=-\infty}^\infty X(e^{i\omega n})e^{in\omega t} x[t]=N1t=X(eiωn)einωt
因为 N = 2 π / ω N=2\pi/\omega N=2π/ω,则
x [ t ] = 1 2 π ∑ t = − ∞ ∞ X ( e i ω n ) e i n ω t ω x[t]=\frac{1}{2\pi}\sum_{t=-\infty}^\infty X(e^{i\omega n})e^{in\omega t}\omega x[t]=2π1t=X(eiωn)einωtω
随着周期趋近于无穷大, ω \omega ω趋近于无穷小,那么,上式就从累加变成了积分,且因为 X ( e i ω n ) e i n ω t ω X(e^{i\omega n})e^{in\omega t}\omega X(eiωn)einωtω的周期为 2 π 2\pi 2π,且其仅在周期内有值,于是,上式也随之变为了
x [ t ] = 1 2 π ∫ 0 2 π X ( e i ω n ) e i n ω t d ω x[t]=\frac{1}{2\pi}\int_{0}^{2\pi} X(e^{i\omega n})e^{in\omega t}d\omega x[t]=2π102πX(eiωn)einωtdω

三角波脉冲函数的傅里叶变换(Fourier Transform, FT)是一种将离散时间信号转换成频域表示的重要数学工具。对于一个简单的三角波信号,比如周期为\( T \)的单位三角波 \( u(t) = \frac{2}{T} \cdot |t| \), 其傅里叶变换可以通过直接应用傅里叶变换公式来求解: \[ U(f) = \mathcal{F}\{u(t)\} = \int_{-\infty}^{\infty} u(t) e^{-j2\pi ft} dt \] 由于单位三角波是非平滑的,在0到\( T \)区间上是一条直线,而在其他区间则是零,我们可以分段处理这个积分。 当\( -\frac{T}{2} < t < \frac{T}{2} \),即在一个完整的周期内,\( u(t) \) 的值为1,所以: \[ U(f) = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |t| e^{-j2\pi ft} dt \] 对绝对值函数分解成两部分: \[ U(f) = \frac{4}{T} \left[ \int_{0}^{\frac{T}{2}} t e^{-j2\pi ft} dt - \int_{-\frac{T}{2}}^{0} (-t) e^{-j2\pi ft} dt \right] \] 这两个积分可以分别计算,因为它们是对称的。 计算每个积分并代入得到: \[ U(f) = \frac{4}{T} \left[ \left(\frac{-1}{j2\pi f} e^{-j2\pi f\frac{T}{2}} - \frac{j2\pi f}{(j2\pi f)^2+1}e^{-j2\pi f\frac{T}{2}}\right) - \left(-\frac{1}{j2\pi f} e^{j2\pi f\frac{T}{2}} + \frac{j2\pi f}{(j2\pi f)^2+1}e^{j2\pi f\frac{T}{2}}\right)\right] \] 简化后我们得到: \[ U(f) = \frac{8}{T} \cdot \frac{1}{(j2\pi f)^2+1} \] 这表明,单位三角波的傅里叶变换是一个包含两个洛伦兹分布(Lorentzian functions)的组合,每个分布在频率轴上对应正负半周。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值