目标跟踪之ROAM:Recurrently Optimizing Tracking Model代码训练

本文档详细介绍了如何配置和运行ROAM(Recurrently Optimizing Tracking Model)——一种深度学习目标跟踪方法。首先,创建Python 3.6的虚拟环境并安装PyTorch 1.4及其依赖库。接着,提供了ILSVRC、VOT和OTB数据集的下载链接,以及VGG-16预训练模型的地址。在配置好数据集路径后,运行`make_vid_info.py`生成训练所需信息文件。最后,使用`experiment.py`进行模型训练,若资源有限,可以调整批大小。此外,通过修改`config.py`,可以在OTB数据集上测试模型效果。
部署运行你感兴趣的模型镜像

论文地址:https://arxiv.org/abs/1907.12006
python代码地址:https://github.com/skyoung/ROAM
作者主页:https://tianyu-yang.com/
ROAM:Recurrently Optimizing Tracking Model是CVPR2020一篇深度学习用于目标跟踪的论文,本文针对其python代码运行进行配置,由于作者没有给出原始的模型,要将其用于评测其他数据集需要自己利用ILSVRC数据集进行训练

一、环境配置

创建虚拟环境python3.5版本以上

conda create -n ROAM python=3.6
source activate ROAM

安装pytorch1.4以上

conda install pytorch==1.4.0 torchvision==0.5.0 -c pytorch
或者本地安装:
下载地址:https://download.pytorch.org/whl/torch_stable.html
pip install torch-1.4.0-cp36-cp36m-linux_x86_64.whl
pip install torchvision-0.5.0-cp36-cp36m-linux_x86_64.whl

安装依赖的库

pip install opencv-python
pip install matplotlib
pip install scipy
pip install tensorboardX

二、模型训练

2.1 数据集及预训练模型下载地址

VOT数据集:https://www.votchallenge.net/challenges.html
OTB数据集:http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
ILSVRC数据集(ILSVRC——ImageNet Large-Scale Visual Recongnition Challenge):http://bvisionweb1.cs.unc.edu/ilsvrc2015/ILSVRC2015_VID.tar.gz
VGG-16.mat下载:https://www.vlfeat.org/matconvnet/pretrained/

2.2 路径配置

修改config.py

feat_dir = './Pre-trained/' #预训练模型存放的位置

修改datasets.py

train_dir = os.path.join(root_dir, '/data3/publicData/Datasets/ILSVRC2015/Data/VID/train')
val_dir = os.path.join(root_dir, '/data3/publicData/Datasets/ILSVRC2015/Data/VID/val')
2.3 运行make_vid_info.py

运行python make_vid_info.py制作ILSVRC2015/Data/VID/train/train.jsonILSVRC2015/Data/VID/val/val.json文件,包含了训练集和测试集的一些基本信息,用于后续的训练。如下为train.json
在这里插入图片描述

2.4 模型训练

运行python experiment.py
如果多卡训练 python experiment.py --mGPUs
可能遇到的问题:
在这里插入图片描述
numpy版本降级pip install numpy==1.15.0

训练过程:
在这里插入图片描述
作者论文用的训练代码是Batch_size=16,代码给的是4,而我的显卡不太行,只能先尝试训练Batch_size=2。

三、OTB数据集测试

在config.py设置OTB或VOT数据集路径,并运行python demo.py,效果如下:
在这里插入图片描述

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值