目标跟踪
文章平均质量分 80
百里工人
菜鸡一枚,如果有记载出错的,请多包涵
展开
-
目标跟踪之Pysot系列代码训练(SiamRPN\SiamRPN++)
目标跟踪Pysot系列代码训练原创 2022-02-13 17:03:31 · 10762 阅读 · 38 评论 -
目标跟踪之LTMU:High-Performance Long-Term Tracking with Meta-Updater环境配置及代码运行
代码地址:https://github.com/Daikenan/LTMU论文地址:LTMU是CVPR2020的oral,全文重点分析了跟踪过程中经典的模型更新问题。作者一共在六个state-of-the-art的跟踪器上验证了meta-update的有效性,因此给出了六个trackers的代码,其中论文里面的结果应该是DiMP_LTMU跟踪器(PrDiMP+MU和Super_DiMP+MU的性能更优,但这两个跟踪器是在LTMU发表之后,所以作者也加了进去)。一、创建虚拟环境cd DiMP_LTM原创 2021-10-09 15:09:33 · 2148 阅读 · 13 评论 -
目标跟踪之ICCV2021 Learning Spatio-Temporal Transformer for Visual Tracking代码复现
代码地址:https://github.com/researchmm/Stark配置环境conda create -n stark python=3.6conda activate starkbash install_pytorch17.sh设置路径python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .权重文件保存地址:${STARK_ROOT} -- che原创 2021-09-18 21:30:22 · 3448 阅读 · 52 评论 -
目标跟踪之Pytracking系列代码训练(ATOM\DiMP\PrDiMP\KYS\Super_DiMP\KeepTrack)
参考链接:https://github.com/visionml/pytracking/blob/master/ltr/README.md#ATOMpytracking代码环境配置参考大佬的博客一、训练模型待训练数据集路径:修改/ltr/admin/local.py注:根据ATOM原文的描述,训练ATOM共用到了LaSOT、TrackingNet、COCO等三个数据集,而代码新增了GOT-10k数据集self.tensorboard_dir = self.workspace_dir + '/ho原创 2021-09-04 13:44:43 · 7503 阅读 · 19 评论 -
目标跟踪之ROAM:Recurrently Optimizing Tracking Model代码训练
论文地址:https://arxiv.org/abs/1907.12006python代码地址:https://github.com/skyoung/ROAM作者主页:https://tianyu-yang.com/ROAM:Recurrently Optimizing Tracking Model是CVPR2020一篇深度学习用于目标跟踪的论文,本文针对其python代码运行进行配置,由于作者没有给出原始的模型,要将其用于评测其他数据集需要自己利用ILSVRC数据集进行训练一、环境配置创建虚拟环原创 2021-08-25 20:34:38 · 382 阅读 · 0 评论 -
ECCV2018:DaSiamRPN目标跟踪代码运行及解读
DaSiamRPN主要是在SiamRPN的基础上做了改进。SiamRPN引入RPN使得跟踪能得到相当精确的包围框,但并没有提高分类器的鉴别能力,而DaSiamRPN在前者的基础上,对训练方式做出了改进,提高了网络的鉴别能力。由于电脑没有GPU,只能修改成CPU版本进行运行。...原创 2021-06-06 16:44:42 · 2006 阅读 · 3 评论 -
UAVDT:The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking数据集下载
无人机数据集对于目标跟踪而言是一大挑战,近年来,正对无人机的数据集也越来越多,UAVDT是ICCV2018提出的一个数据集,共包含80000帧图片,不仅可以用于目标跟踪,也可以用于目标检测等。针对目标跟踪,主要有单目标跟踪(UAV-benchmark-S)和多目标跟踪(UAV-benchmark-M)两个数据集,作者在主页据给出相应的跑库工具。作者主页(数据集+跑库工具):https://sites.google.com/site/daviddo0323/projects/uavdt论文下载:http原创 2020-08-04 13:58:18 · 10751 阅读 · 50 评论 -
目标跟踪之DTB70数据集下载及配置
这是一篇AAAI2017的文章,全称:Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark and New Motion Models,给出了70个短视频无人机序列,对于无人机视频的目标跟踪算法,很多都在这个数据库上验证性能。原创 2020-07-25 14:25:05 · 3323 阅读 · 4 评论 -
UAV123数据集下载、简介及配置
UAV123主要由123个无人机视频组成,虽然不如OTB100出名,但不少文章都将UAV123的测试结果进行比较,可见其权威性。由于在之前的博客详细写了OTB的数据集配置方法,所以,这里主要是介绍UAV123不同于OTB100的地方。如果是第一次配置,可以参阅我的上一篇博客。目标跟踪之OTB数据集下载及Visual Tracker Benchmark v1.0配置一、数据集下载UAV123下载地址:https://cemse.kaust.edu.sa/ivul/uav123百度网盘:下载地址,提取码原创 2020-07-16 15:14:59 · 15690 阅读 · 21 评论 -
目标跟踪之ADMM求解简介
近两年,基于相关滤波的目标跟踪开始大量利用ADMM进行求解,从BACF、STRCF、ARCF、ASRCF到AutoTrack,基本上是一脉相承。SRDCF虽然采用高斯塞尔德进行迭代求解,但效率低下,但其实SRDCF也是可以利用ADMM求解的,速度还快很多。通过观察近两年的论文公式推导,比如STRCF,我发现论文中给的公式以及代码的公式略有差异,主要是表现在系数上多了个1/T。本文主要是以BACF、SRDCF求解为例,简要分析一下ADMM的求解思路,有很多不足之处,仅供参考,共同学习。一、ADMM基本原理原创 2020-06-23 14:06:34 · 3129 阅读 · 0 评论 -
目标跟踪之OTB数据集下载及Visual Tracker Benchmark v1.0配置
近期运行CVPR2020的AutoTrack代码时,发现这篇文章只在UAV数据集上测试,而没有在OTB数据集上测试,因此,想着自己运行AutoTrack,测试其在OTB数据集上的性能表现。本文内容一、OTB数据集下载二、下载vlfeat工具包三、Visual Tracker Benchmark v1.0下载四、代码运行五、根据结果绘制Precision和Success曲线一、OTB数据集下载OTB数据集下载地址:http://cvlab.hanyang.ac.kr/tracker_benchmark/原创 2020-06-15 11:03:48 · 7425 阅读 · 30 评论 -
目标跟踪之ECO代码运行及原理简介
ECO:(Efficient Convolution Operators for Tracking)是CVPR2017的一篇基于相关滤波的文章,本文主要对其matlab版本配置运行进行介绍,并简要分析其跟踪原理,分享自己的一些心得...原创 2020-05-25 11:59:43 · 9842 阅读 · 6 评论 -
CNN学习(四)----SiameseFC代码运行Matlab2018a+vs2015+cuda9.0
本文主要描述了matlab环境下运行SiameseFC代码,讲解如何在matlab配置VS2015的C++编译器原创 2020-03-11 11:59:59 · 1601 阅读 · 14 评论 -
C-COT代码运行----Matlab2018a运行matconvnet深度卷积网络
最近在跑C-COT目标跟踪的代码。第一次接触在matlab上运行深度卷积网络,花费不少功夫。1、所需提前安装的内容matlab2018a、visual studio2017(尤其是C++模块,务必要安装)之后跟踪C-COT作者的描述:Download matconvnet ZIP file from https://github.com/vlfeat/matconvnet and unpa...原创 2020-02-24 10:21:45 · 2147 阅读 · 4 评论 -
目标跟踪之MOSSE算法(C++版本配置及原理简介)
MOSSE算法(Minimum Output Sum of Squared Error)是相关滤波用于目标跟踪的鼻祖,可以说是目标跟踪入门学习的第一步。本文主要针对MOSSE的C++代码进行配置运行,结合论文对MOSSE的核心公式进行推导,并对跟踪流程进行介绍原创 2020-05-06 18:13:08 · 3487 阅读 · 2 评论