SIGIR 2024
1 intro
1.1 背景
- 传统推荐系统方法在实际应用中往往未能兑现基准数据集所做的承诺
- 这种差异主要源于传统的离线训练和测试方法
- 在这些场景中,模型在大型静态数据集上训练,然后在有限的测试集上评估,这一过程没有考虑到现实世界数据的动态性质
- 与之形成鲜明对比的是,现实世界的推荐系统处于不断变化的状态,新的用户偏好、物品和交互不断涌现,形成了随时间推移数据分布差异的鸿沟。
- 一方面,最初在历史数据上训练的模型可能无法有效处理这些新出现的多样化数据
- 另一方面,当这些模型用新数据更新时,可能会覆盖之前获取的知识,这一现象被称为灾难性遗忘
- 最近的研究旨在应对这一挑战,大多数工作都在探索利用持续学习方法的潜力
- 第一类研究依赖于replay buffer
- 通过定期使用过去样本选择重新训练模型
- 然而,这种基于样本的方法在缓冲区大小减小时效果会减弱,并且在需要严格数据隐私的情况下使用重播缓冲区是不切实际的
- 第二类工作,基于模型正则化的方法
- 通过限制模型参数防止与先前学习配置的显著偏离来维持知识 <
- 第一类研究依赖于replay buffer