
线性代数
文章平均质量分 55
UQI-LIUWJ
这个作者很懒,什么都没留下…
展开
-
线性代数笔记:汉克尔矩阵(Hankel matrix)
汉克尔矩阵 (Hankel Matrix) 是指每一条副对角线上的元素都相等的矩阵原创 2022-02-28 21:03:17 · 7523 阅读 · 0 评论 -
线性代数笔记 Frobenius 范数和矩阵的迹之间的关系
线性代数笔记:Frobenius 范数_UQI-LIUWJ的博客-CSDN博客先给出结论:举个例子:任取2×2的矩阵A它的Frobenius 范数为:而所以原创 2021-11-03 15:54:43 · 6035 阅读 · 0 评论 -
线性代数笔记: Cholesky分解
1 介绍 当一个实矩阵A是对称正定矩阵的时候,它可以分解成一个下三角矩阵L以及它的转置的乘积,即: 1.1 矩阵半正定的情况如果矩阵是正定的话,那么L唯一确定;如果矩阵是半正定的话,那么也可以分解,不过此时L不唯一。2 举例3 使用scipy.linalg.cholesky求解import numpy as npfrom scipy import linalga = np.array([[4, 12, -16], ...原创 2021-10-21 13:48:16 · 5723 阅读 · 0 评论 -
线性代数笔记:Khatri-Rao积
1 介绍Khatri-Rao积的定义是两个具有相同列数的矩阵与矩阵的对应列向量的克罗内克积(线性代数笔记:Kronecker积_UQI-LIUWJ的博客-CSDN博客) 排列而成的,其生成的矩阵大小为IJ*K,其表示为:2 性质...原创 2021-10-19 17:10:00 · 5800 阅读 · 0 评论 -
线性代数笔记:Kronecker积
1 介绍 Kronecker积也称为克罗内克积,是任意大小矩阵的运算,使用符号其表示为若A为大小m*n的矩阵,B为大小p*q的矩阵,则A与B的克罗内克积是一个大小为mp*nq的矩阵,其表述为: 具体形式为:2 性质2.1 左右分配律2.2 结合律2.3 不满足交换律...原创 2021-10-19 16:37:36 · 5885 阅读 · 0 评论 -
线性代数笔记:Hadamard积
Hadamard积也称为哈达玛积,是矩阵的一种乘积运算,对同等大小的两个矩阵相同位置上进行乘积。【逐元素乘积】 其表达式为:原创 2021-10-19 16:13:34 · 5043 阅读 · 0 评论 -
线性代数笔记:概率矩阵分解 Probabilistic Matrix Factorization (PMF)
概率矩阵分解模型可以解决大规模、稀疏且不平衡的数据。1 PMF的两点假设1.1.观测噪声(观测评分矩阵和近似评分矩阵之差)服从高斯噪声的正态分布观测评分矩阵是ground truth的矩阵,我们记为R;近似评分矩阵是通过矩阵分解的方法求得的矩阵 由这一条假设我们知道,R与之间的差距服从零均值的高斯分布,也即: 将移到右边去,有:· 而在矩阵分解问题里面,观测评分矩阵可以表示...原创 2021-10-13 20:20:36 · 2149 阅读 · 0 评论 -
线性代数笔记:标量、向量、矩阵求导
1 分子布局和分母我们先考虑一个问题:维度为m的一个向量????对一个标量????的求导,那么结果也是一个m维的向量:∂????/∂????。这个m维的求导结果排列成的m维向量到底应该是列向量还是行向量? 答案是行向量和列向量都可以(二者只相差一个转置运算)但是在机器学习算法法优化过程中,如果行向量或者列向量随便写,那么结果就不唯一,乱套了。为了解决矩阵向量求导的结果不唯一,我们引入求导布局。最基本的求导布局有两个:分子布局(numerator layout......原创 2021-09-11 10:59:05 · 8491 阅读 · 0 评论 -
线性代数笔记:Frobenius 范数
Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F。矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和开根,即原创 2021-09-09 11:28:40 · 7722 阅读 · 0 评论 -
李宏毅线性代数总结:万事万物皆可为向量
1这些都可以是向量复习内容:李宏毅线性代数笔记4:向量_刘文巾的博客-CSDN博客线性变化->矩阵->向量1.1甚至函数也是向量向量就是函数泰勒展开后每一项的系数1.2向量的定义1,自定义加法和数乘运算2,满足八性质同一个内容,在不同的向量空间内,表现形式也是不一样的2 子空间复习内容:李宏毅线性代数笔记7 子空间_刘文巾的博客-CSDN博客在之前的子空间中,如果0元素属于子空间,而且关于加法和数乘封闭,那么就是一个...原创 2021-08-01 12:27:40 · 852 阅读 · 0 评论 -
李宏毅线性代数笔记13:SVD分解
1 SVD分解介绍之前用特征值来进行对角化的时候,被对角化的矩阵一定要是方阵,但是SVD的话,非方阵也是可以的。矩阵Σ对角线上的元素都是大于等于0的我们可以改变U,V的一些行和列,来达到Σ对角线上的元素越来越小所以rank(A)就是Σ中对角线元素不为零的数量如果把Σ中全零的部分抹掉,然后U和V中全零对应的行和列也去掉,那么乘积结果还是等于A如果我们多抹掉一些(比如多抹掉一行),把Σ中非零的一部分也抹掉了,结果肯定不等...原创 2021-08-01 11:38:13 · 642 阅读 · 0 评论 -
【ok】李宏毅机器学习12: 对称矩阵
1 对称矩阵性质1)对称矩阵的特征值都是实数证明:以2*2的为例2)在之前对角化一章中,我们知道,不同特征值对应的特征空间,里面的基互相独立这里我们跟进一个更为特殊的性质:如果矩阵是对称的,那么这些不同特征值对应的特征空间,将是正交的证明:2对称矩阵的对角化注:如果是的形式,P得是正交矩阵举个例子3对称矩阵谱分解...原创 2021-08-01 11:21:42 · 541 阅读 · 0 评论 -
李宏毅线性代数11: 正交(Orthogonality)
1范数(norm)&距离1.1 p范数通项2 点积&正交2.1 点积性质2.2 勾股定理(pythagorean theorem)2.3 菱形的两条对角线正交3 正交补向量集S的正交补是一组向量,这组向量垂直于S中的任意一个向量3.1 正交补性质1)正交补是一个子空间利用定义i证明,满足加法和数乘封闭2)对于任何一个非空向量集S,S张成的子空间的正交补和S的正交补相同3)如果W是一个子空间,B是W...原创 2021-08-01 10:58:32 · 5170 阅读 · 1 评论 -
李宏毅线性代数笔记 10: PageRank
1,pagerank介绍不依靠网页的内容,依靠网路的结构2 pagerank举例举个例子:每一个状态的变化都是来自于它的入边经过很多次不同状态信息的传送,最终会达到稳定状态解得答案为:3 1维和大于1维特征空间对应的PageRank特征空间也分1维和大于1维一维空间(ranking唯一)多维空间(ranking不唯一)4 实际的PageRankA是上面那个例子里面的矩阵,hiperlink互相指的那个关联矩阵...原创 2021-08-01 00:14:27 · 618 阅读 · 0 评论 -
李宏毅线性代数笔记9:对角化
1 可对角化2 特征分解如果可对角化的话,那么p矩阵的每一列都是特征向量;对角矩阵对角线上的元素都是特征值如果可对角化的话,那么有n个线性无关的特征向量3 如何对角化4不同特征值对应的特征向量是线性无关的5 对角化应用A和D是相似的6判断一个矩阵是否可以对角化...原创 2021-07-31 23:44:52 · 599 阅读 · 0 评论 -
李宏毅线性代数笔记9:特征值与特征向量
1 特征值&特征向量定义2 特征值&特征向量举例3 已知特征值,如何求特征向量其实就是(A-λIn)v的非零解4 判断一个标量是否是特征值如果(A-λIn)v=0只有零解,那么他就没有特征值(如果A-λIn行列式不为0,那么它就只有唯一解零解,那么他就没有特征值)5 求特征值5.1 举例举例2: 没有特征值6 特征值的性质·特征值是特征多项式的根或特征方程的解。·一个n*n的矩阵至多有n个...原创 2021-07-31 14:29:35 · 708 阅读 · 0 评论 -
李宏毅线性代数笔记8 :坐标系变换8
比如,我们要求关于某一条直线的镜面反射:这个在笛卡尔坐标系里面是很复杂的,但是如果我们换一个坐标系,答案就迎刃而解了如果两个矩阵,,那么A和B是相似的原创 2021-07-31 13:27:18 · 160 阅读 · 0 评论 -
李宏毅线性代数笔记7 子空间
1 子空间的定义满足以下三个条件的向量集V称为子空间1,零向量属于V2,如果向量u和向量w属于V,那么向量u+w属于V3,如果向量u属于V,并且c是一个标量,那么向量cu属于V——》条件1说明:向量集非空0倍的向量u也在子空间中——》条件2+条件3正好是线性组合的两种方式满足三个条件,说明这个是一个子空间这个就不是一个子空间span——由这些向量线性组合张成的空间2 零空间nul...原创 2021-07-31 13:18:10 · 3577 阅读 · 0 评论 -
李宏毅线性代数笔记6:矩阵的计算
1 矩阵的几个概念1.1 数量矩阵主对角线上元素是同一个数,其余元素全为0的n级矩阵1.2 可交换如果AB=BA,那么A,B可交换一般来说,≠,但是如果A,B可交换,那么=1.3 矩阵集合2 初等行变化与矩阵相乘3 阶梯矩阵REF和简化阶梯矩阵RREF3.1 REFRow Echelon Form 行阶梯矩阵3.2 RREFReduced Row Echelon Form 简化行阶梯矩阵...原创 2021-07-31 11:49:14 · 7346 阅读 · 0 评论 -
李宏毅线性代数笔记5:线性方程组
1线性方程的解1.1 两维的情况span of the columns of A——由A的列向量张成的空间2线性方程有解的充要条件线性方程x1a1+x2a2+……+xnan=β有解(consistent)的充要条件——>系数矩阵(coefficient matrix)和增广矩阵(augmented matrix)有相同的秩若秩等于未知元的个数,则有唯一解(向量组线性无关)若秩小于未知元个数,则有无穷多组解(向量组线性相关)——>...原创 2021-07-30 21:56:48 · 1321 阅读 · 0 评论 -
李宏毅线性代数笔记4:向量
1 空间向量假设a=[xy]T,空间中的a可以理解为从原点(0,0)到(x,y)的一条有向线段,也就是x轴上长度与y轴上长度的矢量叠加。那么数乘向量λ×a可以理解为将x轴与y轴长度分别变为λ倍后矢量叠加在一起,同时也可以理解为将原本叠加的向量变为λ倍。1.1 向量的性质1)加法交换律2)加法结合律3)0+α=α+0=α (零元)4)α+(-α)=0 (负元)5)1α=α (单位元)6)(kl)α=k(lα)乘法结合律7)(k+l)α=kα+...原创 2021-07-30 20:03:11 · 1119 阅读 · 0 评论 -
李宏毅线性代数笔记3:行列式det
1 N元排列1.1 顺序和逆序一个排列中:小的在前,大的在后——这一对数组成一个顺序;反之则为逆序1.2 逆序数一个排列中逆序的个数,称之为数1.3 奇排列与偶排列逆序数为奇数的排列——奇排列逆序数为奇数的排列——偶排列1.4 对换和对换的性质对换:将排列中的两个数对换位置性质1:对换改变排列的奇偶性性质2:任意n元排列和排列12345…n可以经过一系列对换互相转化,而且所作对换的次数和这个n元排列有着相同的奇偶性2 N阶行列式2.1 N阶行列式...原创 2021-07-27 10:44:26 · 10906 阅读 · 0 评论 -
李宏毅线性代数笔记2: 线性方程组和数域
1 线性方程组1.1 相容性一个线性方程组有解——这个线性方程组是相容的,否则就是不相容的1.2 齐次线性方程组齐次线性方程组:常数项全为0——>(0,0…..,0)显然是一个解——零解非零解:转换成阶梯型线性方程组后,非零行个数r<元数n(因为等于的话,就有唯一解 零解)2 数域2.1 定义设K是复数集的一个子集,如果K满足:(1)0,1∈K(2)K对于加减乘除封闭那么K是一个数域2.2 几种典型的数域有理数域。实数域,复数域。。。。但原创 2021-07-27 10:28:11 · 608 阅读 · 0 评论 -
李宏毅线性代数笔记1:系统
1 系统2 线性系统线性系统的两个性质:f(a+b)=f(a)+f(b) 加法封闭 f(kx)=kf(x) 数乘封闭通过上图可以知道f(x)=x是一个线性系统,因为它满足加法和数乘封闭通过上图可以知道,f(x)=x^2不是线性系统3 线性系统应用1:Computer Graphics对于一个物体的翻转(空间位置的变化),相当于是对物体每个点都进行线性变换。比如物体的一个顶点是[xyz]经过线性变换变为[x‘y‘z‘].......原创 2021-07-27 10:24:35 · 431 阅读 · 0 评论