矩阵分析与应用+张贤达

第一章 矩阵与线性方程组(十五)

1.向量的范数举例

若有一个向量 a = [ − 3 , 8 , 6 , − 1 ] a=[-3,8,6,-1] a=[3,8,6,1]
则:

  • L 0 L_0 L0范数为向量中非0元素的个数,则 ∣ ∣ a ∣ ∣ 0 = 4 ||a||_0=4 a0=4
  • L 1 L_1 L1范数为向量中每个元素绝对值之和,即 ∣ ∣ a ∣ ∣ 1 = ∑ i = 1 n ∣ a i ∣ ||a||_1=\sum_{i=1}^n|a_i| a1=i=1nai,则 ∣ ∣ a ∣ ∣ 1 = 18 ||a||_1=18 a1=18
  • L 2 L_2 L2范数为向量中每个元素绝对值的平方之和再开方,即 ∣ ∣ a 2 ∣ ∣ = ∑ i = 1 n ∣ a i ∣ 2 ||a_2||=\sqrt{\sum_{i=1}^{n}|a_i|^2} a2=i=1nai2 ,则 ∣ ∣ a ∣ ∣ 2 = 110 ||a||_2=\sqrt{110} a2=110
  • L ∞ L_\infty L范数为向量中每个元素绝对值的最大值,即 ∣ ∣ a ∣ ∣ ∞ = max ⁡ 1 ≤ x ≤ n ∣ x i ∣ ||a||_\infty=\max_{1 \leq x \leq n}|x_i| a=max1xnxi,则 ∣ ∣ a ∣ ∣ ∞ = 8 ||a||_\infty=8 a=8

2.向量的内积举例

若有向量 a = [ 3 , 2 , 1 ] , b = [ 1 , 2 , 3 ] a=[3,2,1],b=[1,2,3] a=[3,2,1],b=[1,2,3]

  • 向量的内积(点乘/点积/数量积)就是对两个向量执行点乘运算,即对这两个向量对应位一一相乘之后求和的操作。则 a ⋅ b = 10 a\cdot b=10 ab=10

3.矩阵的范数与内积概念

3.1 性质

作为一种算子,实矩阵 A ∈ R m x n A \in R_{mxn} ARmxn的范数记作 ∣ ∣ A ∣ ∣ ||A|| A,它是矩阵 A A A的实值函数,必须具有以下性质;
(1)对于任何非零矩阵 A ≠ O A≠O A=O,其范数大于零,即 ∣ ∣ A ∣ ∣ ||A|| A>0,并且||O||=0。
(2)对于任意复数c有 ∣ ∣ c A ∣ ∣ = ∣ c ∣ ∣ ∣ A ∣ ∣ ||cA||=|c|||A|| cA=cA
(3)矩阵范数满足三角不等式 ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ ||A+B||≤||A||+||B|| A+BA+B
(4)两个矩阵乘积的范数小于或等于两个矩阵范数的乘积,即 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ∣ ∣ B ∣ ∣ ||AB||≤||A|| ||B|| ABAB例如 nxn矩阵 A A A的实值函数
f ( A ) = ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ f(A)=\sum_{i=1}^n\sum_{j=1}^n|a_{ij}| f(A)=i=1nj=1naij
易验证:
(1) f ( A ) ≥ 0 f(A)≥0 f(A)0,并且当 A = 0 A=0 A=0 a i j ≡ 0 a_{ij}≡0 aij0 f ( A ) = 0 f(A)=0 f(A)=0
(2) f ( c A ) = ∑ i = 1 n ∑ j = 1 n ∣ c a i j ∣ = ∣ c ∣ ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ = ∣ c ∣ f ( A ) f(cA)=\sum_{i=1}^n\sum_{j=1}^n|ca_{ij}|=|c|\sum_{i=1}^n\sum_{j=1}^n|a_{ij}|=|c|f(A) f(cA)=i=1nj=1ncaij=ci=1nj=1naij=cf(A)
(3) f ( A + B ) = ∑ i = 1 n ∑ j = 1 n ( ∣ a i j ∣ + ∣ b i j ∣ ) ≤ ∑ i = 1 n ∑ j = 1 n ( ∣ a i j ∣ + ∣ b i j ∣ ) = f ( A + B ) f(A+B) =\sum_{i=1}^n\sum_{j=1}^n(|a_{ij}| +|b_{ij}|) \leq \sum_{i=1}^n\sum_{j=1}^n(|a_{ij}|+ |b_{ij}|) = f(A+B) f(A+B)=i=1nj=1n(aij+bij)i=1nj=1n(aij+bij)=f(A+B)
(4)对于两个矩阵的乘积,有
f ( A B ) f(AB) f(AB)

= ∑ i = 1 n ∑ j = 1 n ∣ ∑ k = 1 n a i k b i k ∣ =\sum_{i=1}^n\sum_{j=1}^n|\sum_{k=1}^na_{ik}b_{ik}| =i=1nj=1nk=1naikbik

≤ ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n ∣ a i k ∣ ∣ b i k ∣ \leq \sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n|a_{ik}||b_{ik}| i=1nj=1nk=1naikbik

≤ ∑ i = 1 n ∑ j = 1 n ( ∑ k = 1 n ∣ a i k ∣ ∑ l = 1 n ∣ b k l ∣ ) \leq \sum_{i=1}^n\sum_{j=1}^n(\sum_{k=1}^n|a_{ik}|\sum_{l=1}^n|b_{kl}|) i=1nj=1n(k=1naikl=1nbkl)

= f ( A ) f ( B ) =f(A)f(B) =f(A)f(B)
因此,实函数 f ( A ) = ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ f(A)= \sum_{i=1}^n\sum_{j=1}^n|a_{ij}| f(A)=i=1nj=1naij是一种矩阵范数

3.2几种典型的矩阵范数和举例

若矩阵 A = [ 1 5 − 2 − 2 1 0 3 − 8 2 ] A= \left[ \begin{matrix} 1 & 5 &-2 \\ -2 & 1 & 0 \\ 3 &-8 & 2 \\ \end{matrix} \right] A=123518202

(1)Frobenius 范数
∣ ∣ A ∣ ∣ F = ( ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ 2 ) ( 1 / 2 ) ||A||_F=( \sum_{i=1}^n\sum_{j=1}^n|a_{ij}|^2)^{(1/2)} AF=(i=1nj=1naij2)(1/2)
这一定义可以视为向量的Euclidean范数对按照矩阵各行排列的“长向量”
x = [ a 11 , … , a 1 n , a 21 , … , a 2 n , … , a m 1 , … , a m n ] T x=[a_{11},…,a_{1n},a_{21},…,a_{2n},…,a_{m1},…,a_{mn}]^T x=[a11,,a1n,a21,,a2n,,am1,,amn]T
的推广。
矩阵的Frobenius范数也称Euclidean范数、Schur范数、Hilbert-Schmidt范数或者 l 2 l_2 l2范数。
举例
∣ ∣ A ∣ ∣ F = ( ∣ 1 ∣ 2 + ∣ 5 ∣ 2 + ∣ − 2 ∣ 2 + ∣ − 2 ∣ 2 + ∣ 1 ∣ 2 + ∣ 3 ∣ 2 + ∣ − 8 ∣ 2 + ∣ 2 ∣ 2 ) 1 / 2 = ( 112 ) 1 / 2 = 4 7 ||A||_F=(|1|^2 + |5|^2 + |-2|^2 + |-2|^2 + |1|^2+|3|^2+|-8|^2+|2|^2)^{1/2} =(112)^{1/2}=4\sqrt7 AF=(12+52+22+22+12+32+82+221/2=(112)1/2=47
(2) l p l_p lp范数
∣ ∣ A ∣ ∣ p = max ⁡ x ≠ 0 ∣ ∣ A x ∣ ∣ p ∣ ∣ x ∣ ∣ p ||A||_p=\max_{x≠0}\frac{||Ax||_p}{||x||_p} Ap=x=0maxxpAxp
式中, ∣ ∣ x ∣ ∣ p ||x||_p xp向量 x x x l p l_p lp范数。 l p l_p lp范数也称Minkowski p范数,或者简称p范数。
举例

  • 当p=1时,
    ∣ ∣ A ∣ ∣ 1 = m a x ( 1 + 2 + 3 , 5 + 1 + 8 , 2 + 0 + 2 ) = 14 = ∣ ∣ A ∣ ∣ c o l ||A||_1 =max(1+2+3,5+1+8,2+0+2)=14=||A||_{col} A1=max(1+2+3,5+1+8,2+0+2)=14=Acol

  • 当p=2时,
    A T = [ 1 − 2 3 5 1 − 8 − 2 0 2 ] A^T= \left[ \begin{matrix} 1 & -2 &3 \\ 5 &1 & -8 \\ -2 &0 & 2 \\ \end{matrix} \right] AT=152210382
    ——>
    A T A = [ 14 − 21 4 − 21 90 − 26 4 − 26 8 ] A^TA= \left[ \begin{matrix} 14 & -21 &4 \\ -21 & 90 & -26 \\ 4 &-26 & 8 \\ \end{matrix} \right] ATA=142142190264268
    A T A A^TA ATA的最大特征值约为102.66, ∣ ∣ A ∣ ∣ 2 = 102.66 = 10.132 = ∣ ∣ A ∣ ∣ s p e c ||A||_2=\sqrt{102.66}=10.132=||A||_{spec} A2=102.66 =10.132=Aspec
    (3)行和范数
    ∣ ∣ A ∣ ∣ r o w = max ⁡ 1 ≤ i ≤ m ∑ j = 1 n ∣ a i j ∣ ||A||_{row}=\max_{1 \leq i \leq m}{\sum_{j=1}^n|a_{ij}|} Arow=1immaxj=1naij
    举例
    ∣ ∣ A ∣ ∣ r o w = m a x ( 1 + 5 + 2 , 2 + 1 + 0 , 3 + 8 + 2 ) = 13 ||A||_{row}=max(1+5+2,2+1+0,3+8+2)=13 Arow=max(1+5+2,2+1+0,3+8+2)=13
    (4)列和范数
    ∣ ∣ A ∣ ∣ c o l = max ⁡ 1 ≤ j ≤ n ∑ i = 1 n ∣ a i j ∣ ||A||_{col}=\max_{1 \leq j \leq n}{\sum_{i=1}^n|a_{ij}|} Acol=1jnmaxi=1naij
    举例
    ∣ ∣ A ∣ ∣ c o l = m a x ( 1 + 2 + 3 , 5 + 1 + 8 , 2 + 0 + 2 ) = 14 ||A||_{col}=max(1+2+3,5+1+8,2+0+2)=14 Acol=max(1+2+3,5+1+8,2+0+2)=14
    en:
    (5)谱范数
    ∣ ∣ A ∣ ∣ s p e c = σ m a x = λ m a x ||A||_{spec}=σ_{max}=\sqrt{\lambda_{max}} Aspec=σmax=λmax
    式中, σ m a x σ_{max} σmax是矩阵 A A A的最大奇异值,即 A H A A^HA AHA的最大特征值 λ m a x \lambda_{max} λmax的正平方根。
    谱范数也称最大奇异值范数或者算子范数。

  • 向量 x x x l p l_p lp范数 ∣ ∣ x ∣ ∣ p ||x||_p xp相当于该向量的长度。

  • 当矩阵 A A A作用于长度为 ∣ ∣ x ∣ ∣ p ||x||_p xp的向量 x x x时,得到线性变换结果为向量 A x Ax Ax,其长度为 ∣ ∣ A x ∣ ∣ p ||Ax||_p Axp。线性变换矩阵 A A A可视为一线性放大器算子。因此,比率 ∣ ∣ A x ∣ ∣ p / ∣ ∣ x ∣ ∣ p ||Ax||_p/||x||_p Axp/xp提供了线性变换 A x Ax Ax相对于 x x x的放大倍数,而矩阵 A A A的p范数 ∣ ∣ A ∣ ∣ p ||A||_p Ap 是由 A A A产生的最大放大倍数。类似地,放大器算子 A A A的最小放大倍数由
    m i n ∣ A ∣ p = min ⁡ x ∞ 0 ∣ ∣ A x ∣ ∣ p ∣ ∣ x ∣ ∣ p min|A|_p = \min_{x \infty 0} \frac{||Ax||_p}{||x||_p} minAp=x0minxpAxp
    给出。
    比率 ∣ ∣ A ∣ ∣ p / m i n ∣ A ∣ p ||A||_p/min|A|_p Ap/minAp 描述放大器算子 A A A的“动态范围”。

3.3矩阵的范数的性质

A A A, B B B是mxn矩阵,
∣ ∣ A + B ∣ ∣ + ∣ ∣ A − B ∣ ∣ = 2 ( ∣ ∣ A ∣ ∣ 2 + ∣ ∣ B ∣ ∣ 2 ) ( 平 行 四 边 形 法 则 ) ||A+B||+||A-B||=2(||A||^2+||B||^2)(平行四边形法则) A+B+AB=2(A2+B2)()
∣ ∣ A + B ∣ ∣ ∣ ∣ A − B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ 2 + ∣ ∣ B ∣ ∣ 2 ||A+B||||A-B||≤||A||^2+||B||^2 A+BABA2+B2

3.4矩阵的内积

对任意mxn复矩阵 A A A B B B,矩阵的内积记作 < A , B > <A,B> <A,B>,定义为
< A , B > − A H B <A,B>-A^HB <A,B>AHB

3.5矩阵的内积与范数之间的关系

(1)Cauchy-Schwartz不等式
∣ < A , B > ∣ ² ≤ ∣ ∣ A ∣ ∣ 2 ∣ ∣ B ∣ ∣ 2 |<A,B>|² ≤ ||A||^2||B||^2 <A,B>²A2B2
等号成立,当且仅当 A = c B A=cB A=cB,其中,c是某个复常数。
(2) Pathagoras定理
< A , B > = 0 → ∣ ∣ A + B ∣ ∣ 2 = ∣ ∣ A ∣ ∣ 2 + ∣ ∣ B ∣ ∣ 2 <A,B>=0→||A+B||^2=||A||^2+||B||^2 <A,B>=0A+B2=A2+B2
(3)极化恒等式
R e ( < A , B > ) = 1 4 ( ∣ ∣ A + B ∣ ∣ 2 − ∣ ∣ A − B ∣ ∣ 2 ) Re (<A,B>) = \frac{1}{4} (||A + B||^2- ||A- B||^2) Re(<A,B>)=41(A+B2AB2)
R e ( < A , B > ) = 1 2 ( ∣ ∣ A + B ∣ ∣ 2 − ∣ ∣ A ∣ ∣ 2 − ∣ ∣ B ∣ ∣ 2 ) Re (<A,B>) = \frac{1}{2} (||A + B||^2- ||A||^2 - ||B||^2) Re(<A,B>)=21(A+B2A2B2)
式中, R e ( ⋅ ) Re(·) Re()表示取复数的实部。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值