学习来源:《矩阵分析与应用》张贤达 清华大学出版社
1.基
1.1 张成集(生成元)
向量 的所有线性组合的集合称为由
张成(或生成)的子空间(或闭包),记作
向量 称为子空间
的张成集(或生成元)。
1.2 基
生成子空间 的线性无关向量
称为子空间
的基向量或简称为基。生成子空间
的基向量的个数称为子空间
的维数,即
值得注意的是, 只是子空间
的一组基,并非唯一的基。向量空间
中的任何
个线性无关向量的集合都是
的基。虽然一个子空间可能存在许多组基,但所有的基都具有相同的向量个数。
1.3 对偶基、正交基向量和标准正交基向量
1)若 和
是两组不同的基,且
,则称其中一组基是另外一组基的对偶基。
2)令 是子空间
的基向量。若这些基满足正交条件
则称这些基向量为正交基向量。
3)若正交基向量 中所有向量的范数均等于 1 ,即
则称为标注正交基向量。
2. Gram-Schmidt 正交化
将 转换为标准正交向量组
的方法称为 Gram-Schmidt 正交化。
2.1 正交化构造过程
令 是
维向量子空间
的任意一组基(一组线性无关向量)。那么,子空间
的标准正交基可以通过 Gram-Schmidt 正交化构造如下
式中, 。
2.2 例
令 是
的子空间,其中
令所构造的 子空间的正交基向量为
。由 Gram-Schmidt 正交化的过程可知,定义
,其中常数
根据正交条件
确定。由
得 。所以
子空间的正交基为
,其中
标准正交基为
3. 矩阵的标量函数
矩阵的很多性质可以使用标量函数描述。例如:矩阵的二次型、迹、行列式和秩。
3.1 矩阵的二次型
任意一个方阵 的二次型
是一个实标量。以实矩阵为例
这是变元 的二次型函数,故称
为矩阵
的二次型。
对于任何一个二次型函数,存在许多矩阵 ,它们的二次型
相同。但二次型相同的诸多矩阵中有一个唯一的对称矩阵。因此,在讨论矩阵
的二次型时,通常都假定
为实对称矩阵或复共轭对称矩阵。
3.2 正定矩阵
称一个对称矩阵为:
1)正定矩阵,若二次型 ;
2)半正定矩阵,若二次型 ;
3)负定矩阵,若二次型 ;
4)半负定矩阵,若二次型 ;
5)不定矩阵,若二次型 既可能取正值,也可能取负值。
3.3 矩阵的迹
矩阵
的对角元素之和称为
的迹(trace),记作
,即
3.4 迹的性质
若 和
均为
矩阵,
是一个复或实的常数,则:
1) ;
2) ;
3) ;
4)矩阵 的转置、复数共轭和复数共轭转置的迹分别为
5)迹是相似不变量,若 为
矩阵,且
为
矩阵,则
6)若矩阵 和
均为
矩阵,且
非奇异,则
7)若 是一个
矩阵,则
8) 和
9)迹等于特征值之和,即
10)对于任何正整数 ,有
等号右边称为 的诸特征值的
次矩。
11)类似于向量的 Euclidean 范数 ,一个
实矩阵
的 Frobenius 范数也可以利用
矩阵
或
矩阵
的迹定义为
3.5 行列式
1)一个 正方矩阵
的行列式记作
或
,定义为
2)行列式不等于零的矩阵称为非奇异矩阵。非奇异矩阵 存在逆矩阵
。
3)若 非奇异,则
。
3.6 矩阵的秩
矩阵 的秩定义为该矩阵中线性无关的行和列的个数,记为
或
。
秩的性质:
1)矩阵乘积 的秩
满足不等式
。
2)秩小于或等于矩阵的行数或列数。
3)当 矩阵
的秩等于
时,
是非奇异矩阵,或称
满秩。
4)若 ,则称矩阵
是秩亏缺的。一个秩亏缺的正方矩阵称为奇异矩阵。
5)若 (或
),则称矩阵
是行满秩(或列满秩)的。
6)任何矩阵 左乘列满秩矩阵或右乘行满秩矩阵后,矩阵
的秩保持不变。
7)若 ,则
。
8)若 且
,则
。
9) 若 ,则