学习来源:《矩阵分析与应用》张贤达 清华大学出版社
1.基
1.1 张成集(生成元)
向量 的所有线性组合的集合称为由 张成(或生成)的子空间(或闭包),记作
向量 称为子空间 的张成集(或生成元)。
1.2 基
生成子空间 的线性无关向量 称为子空间 的基向量或简称为基。生成子空间 的基向量的个数称为子空间 的维数,即
值得注意的是, 只是子空间 的一组基,并非唯一的基。向量空间 中的任何 个线性无关向量的集合都是 的基。虽然一个子空间可能存在许多组基,但所有的基都具有相同的向量个数。
1.3 对偶基、正交基向量和标准正交基向量
1)若 和 是两组不同的基,且 ,则称其中一组基是另外一组基的对偶基。
2)令 是子空间 的基向量。若这些基满足正交条件
则称这些基向量为正交基向量。
3)若正交基向量 中所有向量的范数均等于 1 ,即
则称为标注正交基向量。
2. Gram-Schmidt 正交化
将 转换为标准正交向量组 的方法称为 Gram-Schmidt 正交化。
2.1 正交化构造过程
令 是 维向量子空间 的任意一组基(一组线性无关向量)。那么,子空间 的标准正交基可以通过 Gram-Schmidt 正交化构造如下
式中, 。
2.2 例
令 是 的子空间,其中
令所构造的 子空间的正交基向量为 。由 Gram-Schmidt 正交化的过程可知,定义 ,其中常数 根据正交条件 确定。由
得 。所以 子空间的正交基为 ,其中
标准正交基为
3. 矩阵的标量函数
矩阵的很多性质可以使用标量函数描述。例如:矩阵的二次型、迹、行列式和秩。
3.1 矩阵的二次型
任意一个方阵 的二次型 是一个实标量。以实矩阵为例
这是变元 的二次型函数,故称 为矩阵 的二次型。
对于任何一个二次型函数,存在许多矩阵 ,它们的二次型 相同。但二次型相同的诸多矩阵中有一个唯一的对称矩阵。因此,在讨论矩阵 的二次型时,通常都假定 为实对称矩阵或复共轭对称矩阵。
3.2 正定矩阵
称一个对称矩阵为:
1)正定矩阵,若二次型 ;
2)半正定矩阵,若二次型 ;
3)负定矩阵,若二次型 ;
4)半负定矩阵,若二次型 ;
5)不定矩阵,若二次型 既可能取正值,也可能取负值。
3.3 矩阵的迹
矩阵 的对角元素之和称为 的迹(trace),记作 ,即
3.4 迹的性质
若 和 均为 矩阵, 是一个复或实的常数,则:
1) ;
2) ;
3) ;
4)矩阵 的转置、复数共轭和复数共轭转置的迹分别为
5)迹是相似不变量,若 为 矩阵,且 为 矩阵,则
6)若矩阵 和 均为 矩阵,且 非奇异,则
7)若 是一个 矩阵,则
8) 和
9)迹等于特征值之和,即
10)对于任何正整数 ,有
等号右边称为 的诸特征值的 次矩。
11)类似于向量的 Euclidean 范数 ,一个 实矩阵 的 Frobenius 范数也可以利用 矩阵 或 矩阵 的迹定义为
3.5 行列式
1)一个 正方矩阵 的行列式记作 或 ,定义为
2)行列式不等于零的矩阵称为非奇异矩阵。非奇异矩阵 存在逆矩阵 。
3)若 非奇异,则 。
3.6 矩阵的秩
矩阵 的秩定义为该矩阵中线性无关的行和列的个数,记为 或 。
秩的性质:
1)矩阵乘积 的秩 满足不等式 。
2)秩小于或等于矩阵的行数或列数。
3)当 矩阵 的秩等于 时, 是非奇异矩阵,或称 满秩。
4)若 ,则称矩阵 是秩亏缺的。一个秩亏缺的正方矩阵称为奇异矩阵。
5)若 (或 ),则称矩阵 是行满秩(或列满秩)的。
6)任何矩阵 左乘列满秩矩阵或右乘行满秩矩阵后,矩阵 的秩保持不变。
7)若 ,则 。
8)若 且 ,则 。
9) 若 ,则