矩阵分析与应用(6)

学习来源:《矩阵分析与应用》张贤达 清华大学出版社

1.基

1.1 张成集(生成元)

        向量 x_1,x_2,\cdots ,x_d 的所有线性组合的集合称为由 x_1,x_2,\cdots ,x_d 张成(或生成)的子空间(或闭包),记作

W=Span\left \{ x_1,x_2,\cdots x_d \right \}=Close\left \{ x_1,x_2,\cdots x_d \right \}

向量 x_1,x_2,\cdots x_d 称为子空间 W 的张成集(或生成元)。

1​​​​​​​.2 基

        生成子空间 W 的线性无关向量 \left \{ u_{1},u_2,\cdots ,u_d \right \} 称为子空间 W 的基向量或简称为基。生成子空间 W 的基向量的个数称为子空间 W 的维数,即

d=dim(Span\left \{ u_{1},u_2,\cdots ,u_d \right \})

值得注意的是, \left \{ u_{1},u_2,\cdots ,u_d \right \} 只是子空间 W 的一组基,并非唯一的基。向量空间 W 中的任何 d 个线性无关向量的集合都是 W 的基。虽然一个子空间可能存在许多组基,但所有的基都具有相同的向量个数。

1.3 对偶基、正交基向量和标准正交基向量

        1)若 \left \{ \alpha _1,\alpha _2, \cdots ,\alpha _n\right \} 和 \left \{ \beta _1,\beta _2, \cdots ,\beta _n\right \} 是两组不同的基,且 \alpha _i^H\beta _i=0 ,则称其中一组基是另外一组基的对偶基。

        2)令 \left \{ x _1,x _2, \cdots ,x _n\right \} 是子空间 Span\left \{ x _1,x _2, \cdots ,x _n\right \} 的基向量。若这些基满足正交条件

\left \langle x_i,x_j \right \rangle=x_i^Tx_j=0,\forall i\neq j

则称这些基向量为正交基向量。

        3)若正交基向量 \left \{ x _1,x _2, \cdots ,x _n\right \} 中所有向量的范数均等于 1 ,即

\left \| x_i \right \|=1,i=1,2,\cdots ,n

则称为标注正交基向量。

2. Gram-Schmidt 正交化

        将 x_1,x_2,\cdots ,x_n 转换为标准正交向量组 \left \{ u_1,u_2,\cdots ,u_n \right \} 的方法称为 Gram-Schmidt 正交化。

2.1 正交化构造​​​​​​​过程

        令 \left \{ x _1,x _2, \cdots ,x _n\right \} 是 p 维向量子空间 W 的任意一组基(一组线性无关向量)。那么,子空间 W 的标准正交基可以通过 Gram-Schmidt 正交化构造如下

p_1=x_1,\qquad u_1=\frac{p_1}{\left \| p_1 \right \|}=\frac{x_1}{\left \| x_1 \right \|}

p_k=x_k-\sum_{i=1}^{k-1}(u_i^Hx_k)u_i, \qquad u_k=\frac{p_k}{\left \| p_k \right \|}

式中, 2\leqslant k\leqslant n 。

2.2 例

        令 W=Span\left \{ x_1,x_2 \right \} 是 R^3 的子空间,其中

x_1=\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}, \qquad x_2=\begin{bmatrix} 0\\ 2\\ -7 \end{bmatrix}

令所构造的 W 子空间的正交基向量为 p_1,p_2 。由 Gram-Schmidt 正交化的过程可知,定义 p_1=x_1,p_2=x_2+ap_1 ,其中常数 a 根据正交条件 p_1^Tp_2=0 确定。由

p_1^T p_2=p_1^T(x_2+ap_1)=p_1^Tx_2+ap_1^Tp_1=-12+6a=0

得 a=2 。所以 W 子空间的正交基为 \left \{ p_1,p_2 \right \} ,其中 

p_1=\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}, \qquad p_2=\begin{bmatrix} 2\\ 4\\ -3 \end{bmatrix}

标准正交基为

u_1=\begin{bmatrix} \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{6}}\\ \frac{2}{\sqrt{6}} \end{bmatrix}, \qquad u_2=\begin{bmatrix} \frac{2}{\sqrt{29}}\\ \frac{4}{\sqrt{29}}\\ \frac{-3}{\sqrt{29}} \end{bmatrix}

3. 矩阵的标量函数

        矩阵的很多性质可以使用标量函数描述。例如:矩阵的二次型、迹、行列式和秩。

3.1 矩阵的二次型

        任意一个方阵 A 的二次型 x^HAx 是一个实标量。以实矩阵为例

                 x^TAx=\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}\begin{bmatrix} 1 &4 &2 \\ -1& 7 &5 \\ -1& 6 &3 \end{bmatrix}\begin{bmatrix} x_1\\x_2 \\x_3 \end{bmatrix}

                            =x_1^2-x_2x_1-x_3x_1+4x_1x_2+7x_2^2+6x_3x_2+2x_1x_3+5x_2x_3+3x_3^2

                            =x_1^2+7x_2^2+3x_3^2+3x_1x_2+x_1x_3+11x_2x_3

这是变元 x 的二次型函数,故称 x^TAx 为矩阵 A 的二次型。

        对于任何一个二次型函数,存在许多矩阵 A ,它们的二次型 x^TAx=f(x_1,x_2,\cdots ,x_n) 相同。但二次型相同的诸多矩阵中有一个唯一的对称矩阵。因此,在讨论矩阵 A 的二次型时,通常都假定 A 为实对称矩阵或复共轭对称矩阵。

3.2 正定矩阵

        称一个对称矩阵为:

        1)正定矩阵,若二次型 x^HAx > 0,\forall x\neq 0 ;

        2)半正定矩阵,若二次型 x^HAx \geqslant 0,\forall x\neq 0 ;

        3)负定矩阵,若二次型 x^HAx < 0,\forall x\neq 0 ;

        4)半负定矩阵,若二次型 x^HAx \leqslant 0,\forall x\neq 0 ;

        5)不定矩阵,若二次型 x^HAx 既可能取正值,也可能取负值。

3.3 矩阵的迹

        n \times n 矩阵 A 的对角元素之和称为 A 的迹(trace),记作 tr(A) ,即

tr(A)=a_{11}+a_{22}+\cdots +a_{nn}=\sum_{i=1}^{n}a_{ii}

3.4 迹的性质

        若 A 和 B 均为 n \times n 矩阵,c 是一个复或实的常数,则:

        1) tr(A\pm B)=tr(A)\pm tr(B) ;

        2) tr(cA)=ctr(A) ;

        3) tr(c_1A\pm c_2B)=c_1tr(A)\pm c_2tr(B) ;

        4)矩阵 A 的转置、复数共轭和复数共轭转置的迹分别为

tr(A^T)=tr(A), \qquad tr(A^*)=[tr(A)]^*, \qquad tr(A^H)=[tr(A)]^*

        5)迹是相似不变量,若 A 为 m \times n 矩阵,且 B 为 n \times m 矩阵,则

tr(AB)=tr(BA)

        6)若矩阵 A 和 B 均为 n \times n 矩阵,且 B 非奇异,则

tr(BAB^{-1 })=tr(B^{-1}AB)=tr(A)

        7)若 A 是一个 m\times n 矩阵,则

tr(A^HA)=0\Leftrightarrow A=O_{m\times n}

        8) x^HAx=tr(Axx^H) 和 y^Hx=tr(xy^H)

        9)迹等于特征值之和,即

tr(A)=\lambda _1+\lambda _2+\cdots +\lambda _n

        10)对于任何正整数 k ,有

tr(A^k)=\sum_{ i=1}^{n}\lambda _{i}^{k}

         等号右边称为 A 的诸特征值的 k 次矩。

        11)类似于向量的  Euclidean 范数 \left \| x \right \|=\sqrt{x^Tx} ,一个 m\times n 实矩阵 A 的 Frobenius 范数也可以利用 m\times m 矩阵 A^TA 或 n\times n 矩阵 AA^T 的迹定义为

\left \| A \right \|_F=\sqrt{tr(A^TA)}=\sqrt{tr(AA^T)}

3.5 行列式

        1)一个 n\times n 正方矩阵 A 的行列式记作 det(A) 或 \left | A \right | ,定义为

det(A)=\left | A \right |=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} &a_{22} &\cdots &a_{2n} \\ \vdots & \vdots & &\vdots \\ a_{n1}&a_{n2} & \cdots & a_{nn} \end{vmatrix}

        2)行列式不等于零的矩阵称为非奇异矩阵。非奇异矩阵 A 存在逆矩阵 A^{-1} 。

        3)若 A 非奇异,则 \left | A^{-1} \right |=\left | A \right |^{-1} 。

3.6 矩阵的秩

        矩阵 A_{m\times n} 的秩定义为该矩阵中线性无关的行和列的个数,记为 r_A 或 rank(A) 。

        秩的性质:

        1)矩阵乘积 AB 的秩 r(AB) 满足不等式 r(AB) \leqslant min\left \{ r_A,r_B \right \} 。

        2)秩小于或等于矩阵的行数或列数。

        3)当 n\times n 矩阵 A 的秩等于 n 时,A 是非奇异矩阵,或称 A 满秩。

        4)若 r(A_{m\times n})< min\left \{ m,n \right \} ,则称矩阵 A 是秩亏缺的。一个秩亏缺的正方矩阵称为奇异矩阵。

        5)若 r(A_{m\times n})=m(< n) (或 r(A_{m\times n})=n(< m) ),则称矩阵 A 是行满秩(或列满秩)的。

        6)任何矩阵 A 左乘列满秩矩阵或右乘行满秩矩阵后,矩阵 A 的秩保持不变。

        7)若 A\in C^{m\times n} ,则 r(A^H)=r(A^T)=r(A^*)=r(A) 。

        8)若 A\in C^{m\times n} 且 c\neq 0 ,则 r(cA)=r(A) 。​​​​​​​

        9) 若 A\in C^{m\times n} ,则

r(AA^T)=r(A^TA)=r(A)

r(AA^H)=r(A^HA)=r(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值