1. Inductive learning
Inductive learning (归纳式学习)。归纳是从已观测到的数据到一般数据的推理,归纳学习即我们平时所说的监督学习,使用带有标签的数据进行模型训练,然后使用训练好的模型预测测试集数据的标签,训练集数据不包含测试集数据。
2. Transductive learning
Transductive learning (直推式学习)。直推是从观测到的特定数据到特定数据的推理。直推学习与归纳学习不同的是,训练数据和测试数据在之前都已经可以观测,我们从已知的训练数据学习特征来预测测试集标签。即使我们不知道测试集的标签,我们也可以从学习过程中利用数据中的特征或其它信息来进行推理。换言之,直推式学习是用训练集数据和测试集数据共同训练模型,然后再用测试集数据进行测试。
3. 两种方法的差异
两种学习方法最明显的差异就是在Transductive learning中,训练数据和测试数据都是可观测的,而在Inductive learning中测试数据是你事先并不知道的。
Transductive learning不能构建预测模型,当测试集来了新数据后我们需要重新运行算法从头开始学习,然后预测测试集标签。而Inductive learning构建了一个预测模型,当测试集来了新数据后可以直接来进行预测。
简单来讲,Inductive learning构建了一个一般模型,可以根据可观测数据(训练数据)来预测任意新的数据。相反,Transductive learning构建了一个只适用于可观测预测数据和测试数据的模型。
我们用一张表来总结这一差异