Transfer Learning in a Transductive Setting阅读笔记NIPS2013

本文介绍了NIPS2013一篇关于迁移学习的研究,重点解决zero/few-shot learning问题。算法通过外部知识推测新类别,发掘数据流结构,并构建数据空间关系,实现了在多个数据集上的优秀性能。主要贡献包括扩展语义知识迁移至直推式学习、优化数据空间分布关系的构建,并在Animals with Attributes、ImageNet和MPII composites数据集上取得最佳效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:http://papers.nips.cc/paper/5209-transfer-learning-in-a-transductive-setting.pdf。

该论文发表在NIPS2013,主要的工作是解决zero-shot learning或few-shot learning问题,即利用少量标签样本或者不用任何标签样本训练分类器,能够对未见过的类别进行分类。算法分为三个部分:(1)利用外部知识,比如文本语料库等等,发现新的类别;(2)发掘了新类的流结构;(3)构建了能力更强的数据空间结构关系。该工作在当时在所有数据集上取得了半监督学习最好的效果。

算法的框架如图1所示。最终的预测结果由三部分组成:a)利用语义知识迁移产生新类;b)少量带标签的例子;c)样本之间的相似性。总结起来其实就是,先基于外部知识,利用已知类推测出未知类的表示,计算未知类数据的样本相似性,构建其有效的空间关系,如果有少量已知的未知类样本标签,则加入其标签,从而得到最终的结果。它其实就是将基于属性的学习模型融合进传统半监督模型里。


图1 算法框架示意图

主要贡献

  (1)将语义知识迁移扩展到直推式学习(直推式学习是指未标记的数据就是最后用来测试的数据,它是半监督学习的一个子类问题。);(2)在构建数据空间分布关系的时候,先将数据投影到低维的语义空间中,再找数据的空间分布关系;(3)该算法在三个数据集(Animals with Attributes, ImageNet for image classification, MPII composites for activity recognition)上均取得2013年的最好效果。

算法内容
算法取名为Propagated Semantic Transfer(PST)。

语义知识迁移(Semantic knowledge transfer)

该部分是指通过已知的类别y1,...,yk集合推测出未见过的类别z1,..,zn的过程。作者使用了两种方式,一种就是经典的加中间层的算法DAP[1](感兴趣的同学可以参考博主对该篇论文的阅读笔记)。设中间层A={a1,...,am}表示,且为二值量,这时,可以训练一个分类器,可以得出p(am|x)的值,其中x为样本。然后,就可以通过训练好的分类器,对新类样本进行类别的预测,得到新类别z的属性向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值