混沌图像加密算法原理及matlab实现

本文介绍了混沌系统的基本原理,特别是Lorenz混沌系统,及其在图像加密中的应用。通过Matlab实现,详细阐述了如何利用Lorenz混沌系统的混沌序列对图像进行加密和解密,展示了加密前后图像的对比效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

       混沌作为一种非线性动力学过程,对初始状态具有高度敏感性,且不可预知,是一种天然的物理密码。因此在密码学,随机数产生,保密通信及图像加密领域具有广泛的应用。本文基于最基本的Lorenz混沌系统实现了图像加密,并利用Matlab演示了这一加密和解密过程。

1、Lorenz混沌系统原理

     一个混沌系统可以由一个微分方程或微分方程组进行表示,我们对这个微分方程或微分方程组进行求解就可以求得相应的混沌序列,一个Lorenz混沌系统可以简单由如下图所示的微分方程组进行表示。 

   描述一个混沌系统最直观的方式就是相空间图,相空间图以系统的状态变量为坐标,图中的每一个点都代表相应时间节点系统所处的状态,因此从相空间图可以清楚地看到非线性动力学系统的演化轨迹,混沌系统的相空间表现为奇异吸引现象, 在有限的区域内,相空间图受到空间中的特定点的吸引,轨迹永不重复,永不交叉。如下图所示的就是Lorenz系统的相空间图。

2、混沌图像加密

      Matlab中提供了ode45()函数可

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值