贝叶斯统计的无信息先验和共轭先验

声明:以下为本人的理解,不一定准确,欢迎大神指正和探讨,但请言辞不要过激。

 

在本人博客的一篇好文转载中,可以了解一下频率派和贝叶斯派,这两个学术派的区别和联系。

简单来说

  • 频率派是完全以出现的样本去估这件事情的概率模型;
  • 贝叶斯派则是先给出这件事情遵循哪一类分布,再根据出现的样本去得到这件事情的具体概率模型。

但他们所评估出来的概率模型事实上都应该算作是后验分布,也就是遵循了“出现这样的样本"这个条件。

以转载好文中的掷硬币为例

  • 频率派,直接根据”十次结果出现七次正面“,来得到这个现象下,概率模型为: P(正面|”十次结果出现七次正面“)=0.7
  • 贝叶斯派,先觉得这个模型是个二项分布,也就是说这个模型的先验分布是二项分布,然后根据出现的”十次结果出现七次正面“,通过贝叶斯定理,反求P(正面|”十次结果出现七次正面“)

 

那么这里对于贝叶斯派来说就有个问题,就是刚开始给出来的先验分布,事实上是假设的,有时候甚至我们都不知道会是什么分布。

那么怎么得到先验分布呢?

两种方法,就是主题的无信息先验和共轭先验。

1. 无信息先验

我们虽然没有先验分布,即没有g(theta)

但实际中我们或许可以通过大量实验,得到在这个theta条件下出现的样本X的分布 f(X| theta)。

然后通过一些公式求出杰弗里斯先验(Jeffrey's prior),把杰弗里斯先验当作theta的先验。

具体的求解过程:

 

2. 共轭先验

思想是,假设theta的先验分布和后验分布是同一种分布

由于根据贝叶斯定理,我们通常假设:

很多时候,由于似然函数L(theta)的介入,导致theta的先验分布g(theta)和g(theta|x)不是同一类分布,有可能先验是正态分布,后验变成gamma分布(打个比方)。

似然函数的求法:

但我们知道生活中有不少时候,一件事情先验和后验就没有道理不是同一类分布,所以不妨假设就是同一个。

于是就可以根据贝叶斯定理,求出对于的先验和后验。

这样的求先验的方法也成为共轭先验,我们也将这样的g函数对应的分布,称为f函数对应分布的共轭family!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值