零点定理简介

最值定理

如果函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,则这个区间上一定存在最大值 M M M和最小值 m m m

即:如果函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上一定有界。


介值定理

如果函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,且最大值和最小值分别为 M M M m m m,则对于 m m m M M M之间的任何实数 c c c,在 [ a , b ] [a,b] [a,b]上至少存在一个 ξ \xi ξ,使得 f ( ξ ) = c f(\xi)=c f(ξ)=c

即:闭区间上连续函数必取得介于最大值和最小值之间的一切值。


零点定理

如果函数在闭区间 [ a , b ] [a,b] [a,b]上连续,且 f ( a ) f(a) f(a) f ( b ) f(b) f(b)异号,则在 ( a , b ) (a,b) (a,b)内至少存在一个 ξ \xi ξ,使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

零点定理其实就是介值定理的一种特殊情况。

零点定理的用法

  • 用于方程找根或证明函数零点存在
  • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调,则 ξ \xi ξ唯一

例题

设函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上可导,且 0 < f ( x ) < 1 , f ′ ( x ) > 1 0<f(x)<1,f'(x)>1 0<f(x)<1,f(x)>1,证明:

(1) 在 ( 0 , 1 ) (0,1) (0,1)内存在一个点 ξ \xi ξ,使得 f ( ξ ) = ξ f(\xi)=\xi f(ξ)=ξ

(2) ξ \xi ξ是唯一的。

解:
\quad (1) 令 F ( x ) = f ( x ) − x F(x)=f(x)-x F(x)=f(x)x

F ( 0 ) = f ( 0 ) − 0 > 0 , F ( 1 ) = f ( 1 ) − 1 < 0 \qquad F(0)=f(0)-0>0,F(1)=f(1)-1<0 F(0)=f(0)0>0,F(1)=f(1)1<0

F ( x ) \qquad F(x) F(x) [ 0 , 1 ] [0,1] [0,1]上连续, F ( 0 ) ⋅ F ( 1 ) < 0 F(0)\cdot F(1)<0 F(0)F(1)<0

\qquad 由连续函数的零点定理得 ∃ ξ ∈ ( 0 , 1 ) \exist\xi\in(0,1) ξ(0,1),使 F ( ξ ) = 0 F(\xi)=0 F(ξ)=0

\qquad f ( ξ ) − ξ = 0 f(\xi)-\xi=0 f(ξ)ξ=0,得证 f ( ξ ) = ξ f(\xi)=\xi f(ξ)=ξ

\quad (2) ∵ F ′ ( x ) = f ′ ( x ) − 1 , f ′ ( x ) > 1 \because F'(x)=f'(x)-1,f'(x)>1 F(x)=f(x)1,f(x)>1

∴ \qquad \therefore ( 0 , 1 ) (0,1) (0,1)上始终由有 F ′ ( x ) > 0 F'(x)>0 F(x)>0,即 F ( x ) F(x) F(x)单调递增

∴ F ( x ) \qquad \therefore F(x) F(x)有且只有一个零点

\qquad 即有且仅有一个点 ξ \xi ξ,使 f ( ξ ) = ξ f(\xi)=\xi f(ξ)=ξ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值