模型剪枝及yolov5剪枝实践

【结构化剪枝掉点太多,不如一开始就选个小模型训练。非结构化剪枝checkpoint文件储存大小没有变化,推理速度没有增益,精度还略微下降。总之目前没有认为模型剪枝在推理速度上有什么增益,比较鸡肋】

1、模型剪枝

模型剪枝的定义就不再赘述,剪枝就是将网络结构中对性能影响不大且权重值较小的节点去掉,从而降低模型的计算量,提高运算速率。

模型剪枝的流程:

  • 正常训练: 初始化模型并进行正常训练,获得一个初始模型。
  • 稀疏化训练: 在训练过程中引入稀疏化方法,使部分参数趋于零。
  • 剪枝操作: 根据稀疏化结果,去除零值或接近零的参数。
  • 微调(Fine-tuning): 对剪枝后的模型进行重新训练,以恢复性能。

很好理解,在剪枝时哪些节点需要被裁剪,需要依靠一个指标。稀疏化就是在训练过程中加以约束,使得某些不重要的节点的参数趋于零,为后续剪枝提供依据。

虽然某些阶段的参数趋于零,但是仍然具有一定的作用,当裁剪后可能会对模型的性能产生较大的波动。所以再通过微调重新训练,恢复模型的性能。

1、 稀疏化训练

数学层面的稀疏化: 稀疏化的核心是通过某种方式(如正则化或剪枝)将权重矩阵中的绝大部分元素置零,使得非零元素的比例非常低。引申到模型中,就是将参数趋于零的过程。

实现稀疏化训练比较简单的就是引入L1正则化,所谓的L1正则化就是‌指向量中各个元素的绝对值之和。在模型训练过程中,引入L1正则化损失的稀疏化训练损失为:
L = L o r i + λ ∣ ∣ w ∣ ∣ 1 L=L_{ori}+λ||w||_1 L=Lori+λ∣∣w1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值