【结构化剪枝掉点太多,不如一开始就选个小模型训练。非结构化剪枝checkpoint文件储存大小没有变化,推理速度没有增益,精度还略微下降。总之目前没有认为模型剪枝在推理速度上有什么增益,比较鸡肋】
1、模型剪枝
模型剪枝的定义就不再赘述,剪枝就是将网络结构中对性能影响不大且权重值较小的节点去掉,从而降低模型的计算量,提高运算速率。
模型剪枝的流程:
- 正常训练: 初始化模型并进行正常训练,获得一个初始模型。
- 稀疏化训练: 在训练过程中引入稀疏化方法,使部分参数趋于零。
- 剪枝操作: 根据稀疏化结果,去除零值或接近零的参数。
- 微调(Fine-tuning): 对剪枝后的模型进行重新训练,以恢复性能。
很好理解,在剪枝时哪些节点需要被裁剪,需要依靠一个指标。稀疏化就是在训练过程中加以约束,使得某些不重要的节点的参数趋于零,为后续剪枝提供依据。
虽然某些阶段的参数趋于零,但是仍然具有一定的作用,当裁剪后可能会对模型的性能产生较大的波动。所以再通过微调重新训练,恢复模型的性能。
1、 稀疏化训练
数学层面的稀疏化: 稀疏化的核心是通过某种方式(如正则化或剪枝)将权重矩阵中的绝大部分元素置零,使得非零元素的比例非常低。引申到模型中,就是将参数趋于零的过程。
实现稀疏化训练比较简单的就是引入L1正则化,所谓的L1正则化就是指向量中各个元素的绝对值之和。在模型训练过程中,引入L1正则化损失的稀疏化训练损失为:
L = L o r i + λ ∣ ∣ w ∣ ∣ 1 L=L_{ori}+λ||w||_1 L=Lori+λ∣∣w∣∣1