经验似然方法


简单介绍


经验似然是一种非参数极大似然方法,而且是一种带限制条件的的非参数似然,在一般的正则条件下,有比较好的统计性质,例如:用经验似然方法构造的置信区间或置信域有域保持性,变换不变性,置信域的形状由数据自行决定,Bartlett纠偏性(可以将置信区间的覆盖率误差的收敛速度提高到$O(n^{-2})$),以及无需构造轴统计量等优点。

一、经验分布

X 1 X_1 X1, X 2 X_2 X2, …, X n X_n Xn 是服从分布 F 0 F_0 F0 的 iid 样本,则经验分布为
F n = 1 n ∑ i = 1 n I ( X i ≤ x ) , F_n = \frac{1}{n}\sum_{i=1}^nI(X_i\leq x), Fn=n1i=1nI(Xix),
其中, I ( ⋅ ) I(\cdot) I()表示示性函数。
利用极大似然方法,则经验似然函数为
L ( θ ) = { ∏ i = 1 n p i : p i ≥ 0 ,   ∑ i = 1 n p i = 1 } 。 L(\boldsymbol{\theta})=\left\{\prod_{i=1}^np_i : p_i\geq0, \ \sum_{i=1}^n p_i=1\right\}。 L(θ)={i=1npi:pi0, i=1npi=1}
则对样本 X 1 , . . . , X n X_1,...,X_n X1,...,Xn,使 ∏ i = 1 n p i \prod_{i=1}^np_i i=1npi 达到最大,必有 p ^ i = 1 n \hat{p}_i=\frac{1}{n} p^i=n1.
因此,在简单样本下,经验分布函数 F n F_n Fn 是分布函数 F 0 F_0 F0 的非参数极大似然估计。

二、经验似然求解过程

X 1 X_1 X1, X 2 X_2 X2, …, X n X_n Xn 是 iid 随机变量,其分布为 F ( θ ) F(\boldsymbol{\theta}) F(θ) θ \boldsymbol{\theta} θ 的维度为 p p p。假设关于 F F F θ \boldsymbol{\theta} θ 的信息有 r ( r ≥ p ) r (r\geq p) r(rp) 个独立的无偏估计函数 ψ ( x , θ ) \boldsymbol{\psi(x,\theta)} ψ(x,θ) 使得 E F ψ ( X , θ ) = 0 。 E_F\boldsymbol{\psi(X,\theta)=0}。 EFψ(X,θ)=0
利用极大似然估计的想法,极大化如下目标函数:
L ( F ) = ∏ i = 1 n d F ( x i ) = ∏ i = 1 n p i L(F) = \prod_{i=1}^ndF(x_i) =\prod_{i=1}^np_i L(F)=i=1ndF(xi)=i=1npi
其中,$p_i = dF(x_i) = P(X_i = x_i),且满足
p i ≥ 0 , ∑ i = 1 n p i = 1 , ∑ i = 1 n p i ψ ( x i , θ ) = 0 。 p_i\geq0, \quad \sum_{i=1}^n p_i=1,\quad \sum_{i=1}^np_i\boldsymbol{\psi(x_i,\theta)}=0。 pi0,i=1npi=1,i=1npiψ(xi,θ)=0

因此,log经验似然函数为
L ( θ ) = { ∏ i = 1 n p i : p i ≥ 0 ,   ∑ i = 1 n p i = 1 ,   ∑ i = 1 n p i ψ ( x i , θ ) = 0 } 。 L(\boldsymbol{\theta})=\left\{\prod_{i=1}^np_i : p_i\geq0, \ \sum_{i=1}^n p_i=1,\ \sum_{i=1}^np_i\boldsymbol{\psi(x_i,\theta)}=0\right\}。 L(θ)={i=1npi:pi0, i=1npi=1, i=1npiψ(xi,θ)=0}
因此,极大化上述经验似然,可得 θ \boldsymbol{\theta} θ 的经验极大似然估计,即 θ ^ = arg max ⁡ θ L ( θ ) 。 \boldsymbol{\hat{\theta}}=\argmax_{\boldsymbol{\theta}}L(\boldsymbol{\theta})。 θ^=θargmaxL(θ)
采用拉格朗日乘子法解上述问题,有
H n = ∑ i = 1 n log ⁡ p i − η ( 1 − ∑ i = 1 n p i ) − n λ T ∑ i = 1 n p i ψ ( x i , θ ) , H_n = \sum_{i=1}^n\log p_i - \eta(1-\sum_{i=1}^np_i) - n\boldsymbol{\lambda}^T\sum_{i=1}^np_i\boldsymbol{\psi(x_i, \theta)}, Hn=i=1nlogpiη(1i=1npi)nλTi=1npiψ(xi,θ),
其中, η \eta η λ \boldsymbol{\lambda} λ 为拉格朗日乘子。对 p i p_i pi求导,得分函数为
0 = S i = ∂ H n ∂ p i = 1 p i − η − n λ T ψ ( x i , θ ) , 0=S_i = \frac{\partial H_n}{\partial p_i} = \frac{1}{p_i} - \eta - n\boldsymbol{\lambda}^T\boldsymbol{\psi(x_i, \theta)} , 0=Si=piHn=pi1ηnλTψ(xi,θ),
等式两边同时乘以 p i p_i pi,得
1 − η p i − n p i λ T ψ ( x i , θ ) = 0 。 1-\eta p_i - np_i\boldsymbol{\lambda^T\psi(x_i, \theta)}=0。 1ηpinpiλTψ(xi,θ)=0
由于对每一 p i p_i pi,上式均成立。因此,
n − η ∑ i = 1 n p i − n λ T ∑ i = 1 n p i ψ ( x i , θ ) = 0 n-\eta \sum_{i=1}^np_i -n\boldsymbol{\lambda}^T \sum_{i=1}^np_i\boldsymbol{\psi(x_i, \theta)}=0 nηi=1npinλTi=1npiψ(xi,θ)=0
也成立。结合经验似然函数得条件,可求得 η \eta η 的经验极大似然估计为 η ^ = n 。 \hat{\eta} = n。 η^=n
η ^ = n \hat{\eta} = n η^=n 代入得分函数中,有
1 p i − n − n λ T ψ ( x i , θ ) = 0 , \frac{1}{p_i} - n - n\boldsymbol{\lambda}^T\boldsymbol{\psi(x_i, \theta)}=0, pi1nnλTψ(xi,θ)=0
解上式,得 p i p_i pi 的经验极大似然估计为 p ^ i = 1 n { 1 + λ T ψ ( x i , θ ) } 。 \hat{p}_i = \frac{1}{n \{1+\boldsymbol{\lambda}^T\boldsymbol{\psi(x_i, \theta)}\}}。 p^i=n{1+λTψ(xi,θ)}1
p i ^ \hat{p_i} pi^代入log似然函数中,有
H n = ∑ i = 1 n log ⁡ 1 n { 1 + λ T ψ ( x i , θ ) } H_n = \sum_{i=1}^n\log \frac{1}{n \{1+\boldsymbol{\lambda}^T\boldsymbol{\psi(x_i, \theta)}\}} Hn=i=1nlogn{1+λTψ(xi,θ)}1
关于 λ \boldsymbol{\lambda} λ求导,
∂ H n ∂ λ = ∑ i = 1 n ψ ( x i , θ ) } { 1 + λ T ψ ( x i , θ ) } = 0 , \frac{\partial H_n}{\partial \boldsymbol{\lambda}} = \sum_{i=1}^n\frac{\boldsymbol{\psi(x_i, \theta)}\}}{\{1+\boldsymbol{\lambda}^T\boldsymbol{\psi(x_i, \theta)}\}}=0, λHn=i=1n{1+λTψ(xi,θ)}ψ(xi,θ)}=0
解上式,得 λ \boldsymbol{\lambda} λ 的经验极大似然估计为 λ ^ \hat{\boldsymbol{\lambda}} λ^

总结

上文就是经验似然求解的基本过程。

[1] 周勇著. 广义估计方程估计方法[M]. 北京:科学出版社, 2013.08.
  • 3
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值