优化器:Adam与AdamW

Adam 和 AdamW 是两种常用的优化器,它们都是基于梯度下降算法的优化器,用于训练神经网络。它们之间的主要区别在于权重衰减(Weight Decay)的处理方式。

Adam(Adaptive Moment Estimation)

更新规则

m = beta1*m + (1-beta1)*grad
v = beta2*v + (1-beta2)*(grad**2)
theta = theta - learning_rate * m / (sqrt(v) + epsilon)

可以看到,对权重衰减项没有特别的处理。

权重衰减处理

在原始的Adam优化器中,权重衰减(weight decay)是在梯度更新中直接应用的,它等价于在损失函数中添加了一个L2正则化项,用于减小权重的幅度。这意味着权重衰减对所有权重参数都是一样的。

动量处理

Adam使用了动量来加速梯度下降,它引入了两个动量参数β₁(用于一阶矩估计)和β₂(用于二阶矩估计)。这些动量参数决定了过去梯度的影响程度。

超参数调整

Adam的超参数(如学习率、β₁、β₂等)通常需要进行调整,以获得最佳性能。

AdamW(Adam with Weight Decay Fix)

更新规则

AdamW 在Adam式的基础上,对 m 项加入了权重衰减项的计算:

m = beta1*m + (1-beta1)*(grad + lambda*theta)
v = beta2*v + (1-beta2)*(grad**2) 
theta = theta - learning_rate * m / (sqrt(v) + epsilon)

这里 lambda 是权重衰减系数。
这相当于在梯度之外,额外考虑了一个 L2 范数正则化目标。这样可以更好地减小权重参数值,提高模型的泛化能力。

权重衰减处理

AdamW是对Adam的改进,它将权重衰减与梯度更新分开处理。具体来说,权重衰减只应用于权重参数,而不应用于偏置参数。这是通过在损失函数中添加一个额外的L2正则化项来实现的,而不是直接应用于梯度更新。

动量处理

AdamW仍然使用动量,与Adam一样,它使用β₁和β₂参数来调整动量的影响。

超参数调整

与Adam类似,AdamW的超参数(如学习率、β₁、β₂等)也需要进行调整,以获得最佳性能。

总结

AdamW的改进主要在于更好地处理了权重衰减。这有助于避免权重衰减对偏置参数的不必要影响,因此可以提高模型的训练效果。然而,选择使用哪种优化器取决于具体的任务和模型,通常需要进行实验来确定哪种优化器最适合您的情况。

### 回答1: adam优化器adamw优化器都是常见的梯度下降优化算法,用于训练深度学习模型。 adam优化器是自适应矩估计(Adaptive Moment Estimation)的缩写,它结合了动量法和RMSProp算法的优点。adam优化器计算每个参数的自适应学习率,并使用梯度的一阶矩估计(即均值)和二阶矩估计(即方差)进行调整。这种自适应学习率可以显著提高模型的收敛速度,并且具有平滑的学习率曲线。 而adamw优化器是在adam优化器的基础上进行改进的一种算法。它引入了一种权重衰减(Weight Decay)的机制,用于约束模型的参数,防止过拟合。传统的adam优化器对于所有的参数都进行相同的权重衰减,而adamw优化器则明确地区分了权重衰减适用于哪些参数。具体而言,它将权重衰减应用于权重矩阵的参数,而不包括偏置项。这样的区分能够更好地约束模型的复杂度,提高泛化性能。 综上所述,adam优化器adamw优化器都是用于训练深度学习模型的优化算法,其中adamw优化器adam优化器的基础上具有更好的模型约束能力,可以有效地防止过拟合,并提高模型的泛化性能。 ### 回答2: Adam优化器AdamW优化器都是常用的梯度下降优化算法,用于训练深度学习模型。 Adam优化器是一种基于动量的优化算法,在梯度下降算法的基础上加入了动量和二阶矩估计。它通过计算每个参数的一阶矩估计(即梯度的指数加权平均)和二阶矩估计(即梯度平方的指数加权平均),来自适应地调整每个参数的学习率。这种调整可以使得参数在训练过程中自动调整学习率,并且能够更好地处理稀有梯度和非稀有梯度。 AdamW优化器是对Adam优化器的一种改进。AdamWAdam的基础上加入了权重衰减(Weight Decay)的概念。权重衰减可以防止模型过拟合,它通过在损失函数中添加正则化项,惩罚模型的权重参数,使模型更倾向于选择较小的权重。AdamW通过对权重衰减的处理方式进行了改进,使得权重衰减可以更加有效地应用于模型的训练过程中。 与Adam相比,AdamW在一些实验中表现出更好的性能,能够更好地控制模型的训练过程,减少过拟合的风险。但是需要注意的是,在某些情况下,AdamW可能会导致训练过程变慢,因此在使用时需要根据具体情况进行选择。 总之,Adam优化器AdamW优化器都是常用的梯度下降优化算法,它们适用于训练深度学习模型,并且通过自适应地调整学习率和应用权重衰减来提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值