一、环境安装
pytorch主要分为CPU与GPU两个大类型
推荐使用pip安装,首先来到官网:PyTorch,找到如下界面,选择自己需要的安装环境,复制run this command栏的代码进行安装即可。Ps:如果需要使用GPU需要先安装CUDA,网上教程很多就不赘述了,cpu处理比较慢,但gpu对设备有一定要求,如果使用笔记本学习,建议安装cpu版本,或者可以尝试colab(免费的GPU)就是需要魔法环境
二、基本操作:
pytorch的基本操作有很多具体可以参考官网Doc模块,一些基本的简单操作可以参考我的另一篇文章:pytorch中张量的基本操作
三、自动求导机制:
在机器学习中,我们会常常用到梯度下降算法,其中最难实现的一点就是多维矩阵的求导,而pytorch、TensorFlow等框架便可以帮我快捷的实现自动求导。
主要使用backward()或者autograd.grad()实现
基本实现可以参考:pytorch--自动求导
四:着手建立一个简单的天气气温预测的网络模型
具体实现请参考:
下面简述一下实现思路:
-
从CSV文件中读取特征数据,使用pandas库的
read_csv
函数。 -
数据预处理:处理特征数据(标准化),标签数据(独热编码)
-
定义神经网络模型,包括输入层、隐藏层和输出层
-
定义损失函数,使用均方差损失函数。
-
定义优化器,使用Adam优化器来更新模型的参数。
-
进行训练,使用MINI-Batch方法进行训练。循环迭代多次,每次迭代都将数据分成小批量进行训练。
-
预测训练结果,使用训练好的模型对输入特征进行预测。
-
显示图表,展示结果。