pytorch 学习

一、环境安装

pytorch主要分为CPU与GPU两个大类型

推荐使用pip安装,首先来到官网:PyTorch,找到如下界面,选择自己需要的安装环境,复制run this command栏的代码进行安装即可。Ps:如果需要使用GPU需要先安装CUDA,网上教程很多就不赘述了,cpu处理比较慢,但gpu对设备有一定要求,如果使用笔记本学习,建议安装cpu版本,或者可以尝试colab(免费的GPU)就是需要魔法环境

二、基本操作:

pytorch的基本操作有很多具体可以参考官网Doc模块,一些基本的简单操作可以参考我的另一篇文章:pytorch中张量的基本操作

三、自动求导机制:

在机器学习中,我们会常常用到梯度下降算法,其中最难实现的一点就是多维矩阵的求导,而pytorch、TensorFlow等框架便可以帮我快捷的实现自动求导。

主要使用backward()或者autograd.grad()实现

基本实现可以参考:pytorch--自动求导

四:着手建立一个简单的天气气温预测的网络模型

具体实现请参考:

基于pytorch实现气温预测

下面简述一下实现思路:

  1. 从CSV文件中读取特征数据,使用pandas库的read_csv函数。

  2. 数据预处理:处理特征数据(标准化),标签数据(独热编码)

  3. 定义神经网络模型,包括输入层、隐藏层和输出层

  4. 定义损失函数,使用均方差损失函数。

  5. 定义优化器,使用Adam优化器来更新模型的参数。

  6. 进行训练,使用MINI-Batch方法进行训练。循环迭代多次,每次迭代都将数据分成小批量进行训练。

  7. 预测训练结果,使用训练好的模型对输入特征进行预测。

  8. 显示图表,展示结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渊兮旷兮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值