Introduction
多时相遥感影像的合成数据,可用于在区域和全球尺度上进行农作物用地制图。MODIS 数据时间分辨率高,在农作物制图中应用广泛;但它空间分辨率低。空间分辨率更高的 Landsat 5、Landsat 7 等数据,由于数据缺失或 SLC-off gaps 等问题,无法获取完整的观测数据。
Landsat 8 时间分辨率为16天。在生长期内通常可用。已经成功用于一系列区域制图。
时间序列延长,分类精度不会按比例提高。其会引发过拟合问题。因此,很有必要探索获取日期(时序长度)对分类精度的影响。
冬小麦的重要性(世界、中国)、冬小麦物候的决定因素(环境条件、农业实践)、监测物候的困难。
以往的研究主要关注采集日期的重要性(因为这关系到冬小麦与其他作物的可分离性),从而忽略了对每个采集日期的影响的定量和系统评估。这种信息的匮乏,会减弱研究人员在采集日期的选择上的努力,从而在后续的应用中引入更多的不确定性。比如,当类间距离很大、类内距离很小时,实际的可分离性很小,但可分离性方法可能会产生一个较大的值。
本研究的目的:系统性地评估 Landsat 获取日期 对 冬小麦时序分类 的影响。包括:识别每个获取日期对分类精度的重要性、理解获取日期组合与精度之间的关系 ......
本研究系统性地评估了冬小麦生长季内的 9 个时间窗口。
Materials and methods
1. Study area
河北省衡水市
2. Landsat datasets and pre-processing
3. Sampling data
4. Temporal phenological patterns
5. Selection of multi-temporal images
根据在每个分析中 Landsat 时序影像的数量进行分类。本研究关注于特定获取日期的影像组合对冬小麦时序分类的影像。本实验使用 2 - 9 张 多季节影像 (multi-seasonal images) 构建每种分类的目标曲线。据此,将所有影像进行所有可能的组合。在 n 张影像中取 m 张的组合数量为:
上式中,n 是影像总数(本研究是 9),m 是用于构建曲线的影像数量(m = 2, 3, …, 9)。所有组合的总数为:
因此,本研究共有 502 种可能的组合。这些组合全部作为 DTW 分类的输入。
6. Dynamic time warping (DTW) classification
6.1. Generation of the NDVI reference curve
6.2. Dynamic time warping (DTW) classification
6.3. Classification threshold determination
7. Classification accuracy assessment
8. Evaluation effects of acquisition images
8.1. Identification of most relevant acquisition dates
8.2. Ranking importance of each acquisition image
使用随机森林(RF)模型,将分类精度构建成 9 个获取日期的函数。
由于使用 (m = 8, 9) 这 2 种组合时,样本数量小于特征数量 (9 个日期)。因此,只利用剩下的组合 (m = 2-7) 进行重要性分析和量化评估:① 对于每种组合 m,对每个分类结果都进行标准化(对于 9 个日期(自变量 x),在某个结果中,包含的日期设置为1,不包含的设置为0)。② 提取每个分类结果的采集日期值,使用1/4 的结果对 RF 模型进行校准,重复10次。③ 通过将某个日期剔除模型后,模型的 MSE 增幅,为每个获取日期的贡献值排序。MSE 增幅最大的即为最重要的。
8.3. Quantifying the effect for each acquisition image date
Results
1. Classification performance based on varied acquisition dates
2. Extraction of most relevant acquisition dates
3. Acquisition image importance 
4. Acquisition image date effects
Discussion
1. Interpretation of performance evaluation
2. Applicability and uncertainty of the evaluation results
3. Implications for extensive applications