宇宙速度
第一宇宙速度(环绕速度):7.9 km/s。物体在地面附近绕地球做匀速圆周运动的最小发射速度。卫星飞行的水平速度即第一宇宙速度,卫星一旦该速度,不需要额外动力即可环绕地球飞行。此时卫星的 飞行轨迹 叫卫星轨道。
第二宇宙速度(逃逸速度):11.2 km/s。物体挣脱地球引力束缚,离开地球的最小发射速度。
第三宇宙速度:16.7 km/s。物体挣脱太阳引力的束缚,离开太阳系的最小发射速度。
第四宇宙速度:约 110-120 km/s。物体摆脱银河系引力束缚,飞出银河系的最小发射速度。
第五宇宙速度:物体飞出本星系群的最小发射速度,由于本星系群的半径和质量均未有足够精确数据,因而无法准确得知大小。估计本星系群大小为500-1000光年,照这样计算,至少需要1500-2250km/s 的发射速度才能飞离。
第六宇宙速度:假设宇宙之外还有别的世界,要摆脱宇宙到达另一个世界,需要的最小发射速度。目前还不知道该宇宙速度是否存在。
卫星轨道参数
卫星在地球引力等各种力的作用下做周期运动,一阶近似是一个开普勒椭圆轨道。由于其他力的存在(比如 地球的形状,大气阻力,其他星球的引力...),实际的轨道和理想的开普勒轨道有偏离,这个在航天里称为“轨道摄动”。
长轴 和 短轴 决定 卫星轨道的形状和大小。交点角 Ω 、近地点幅角 ω 、轨道倾角 i 决定 轨道在空间的方位。这五个参数称为卫星轨道要素(根数)。加上 近地点时刻 tp ,合称为六要素。通过六要素可以确定 任何时刻卫星在空间的位置。
近地点角 ω :在轨道平面内升交点和近地点与地心连线间的夹角。
轨道倾角 i :地球赤道平面与卫星轨道平面间的夹角。
平均近交点:若卫星通过近地点的时刻为 tp,卫星的平均角速度为N,则任一时刻的平均近点角为 M = N ( t - tp )。
星下点:卫星与地球中心连线在 地球表面 的交点。
升交点:卫星 由南往北 飞行时,飞行轨迹在 赤道 上的交点。
周期:卫星绕地球一周的时间。
载距:卫星绕地球一周,地球转过的度数。
卫星轨道高度
高度:卫星离地球表面的距离。轨道越高,轨道半径越大,线速度越小,角速度越小。
低轨道:200~2000 km。中轨道:2000~20000 km。高轨道:> 20000 km。
由于空气阻力的作用,高度小于120km的卫星会掉下来。例:美国1959年发射的一颗卫星,距地球最低点是112Km,这颗卫星发射得很成功,但上去围绕地球转了一圈后就掉下来了。
典型的卫星轨道
地球同步轨道
运行周期等于地球自转周期(23小时56分4秒)的顺行轨道(运行方向与地球自转方向相同)。其 星下点轨迹为 8 字形。对地面观测者而言,每天相同时刻卫星出现在相同的方向上。
地球静止轨道
轨道倾角为 0° 的 圆形(轨道偏心率为 0)地球同步轨道。
SAR卫星 的 升降轨 & 左右视
概念
升轨:卫星从 地球南极 向 地球北极 运动。(升轨 = 从南向北 = 从下往上)
降轨:卫星从 地球北极 向 地球南极 运动。
左视:卫星拍摄方向 为 卫星前进方向 的 左边。(看左边 = 从右向左看)
右视:卫星拍摄方向 为 卫星前进方向 的 右边。
卫星拍摄方向 = 斜距向 (slant range) , 卫星前进方向 = 方位向 (azimuth) 。
理解
SAR 成像的特点是 距离近的先接收到回波 。
升轨时,从下往上拍,成像时 先记录下面、再记录上面,最终效果会 与实际地物上下颠倒。降轨 时,与实际地物的上下顺序一致。
从东往西拍 (西视) 时,先记录东面、再记录西面,最终效果会与实际左右颠倒 (左西右东),即 升轨时的左视、降轨时的右视。反之,从西往东拍 (东视 ),即 升轨时的右视、降轨时的左视,最终成像效果与实际地物的左右顺序一致。
总结: 降轨左视与实际地物上下左右完全一致, 降轨右视 左右颠倒, 升轨右视 上下颠倒,升轨左视 上下左右都颠倒(中心倒置)。