2021 RSE《A systematic method for spatio-temporal phenology estimation of paddy rice》

Introduction

        水稻的重要性。获取水稻物候信息的重要性。研究物候的优点。

        遥感在作物监测方面的应用。SAR的优势。Sentinel-1的优势。

        物候估测的两大类方法:

        (1) 只在收获后收集数据的方法,主要是对平滑后的曲线进行物候阶段分析。平滑方法包括 小波变换、傅里叶转换、SG滤波、非对称高斯模型、双logistics模型、Whittaker滤波等。所使用的植被指数包括 NDVI、LAI、EVI、NDWI、MTCI、NDYI 等。

        (2) 实时收集数据的方法,主要应用 Kalman filter (KF)、extended Kalman filter (EKF)、Particle filter (PF) 等在线/实时方法进行物候分析。使用的指数包括 NDVI、极化参数等。该方法又包括 (2a) 仅基于当前影像进行估测(2b) 基于动态系统理论(同时应用当前影像与一个进化模型)两类。2b 使用时序参数,物候分析比 2a 更精准,且可以使用先验知识进行提前估测。

       许多研究倾向于估测关键日期,很少进行连续性的物候检测。本文使用 BBCH scale 进行 连续的物候监测。BBCH(Biologische Bundesan-stalt, Bundessortenamt und CHemische Industrie)使用一个 00 ~ 99 之间的连续数字来描述作物演化。

       PF 可以更可靠地进行作物物候状态的实时估测。但在一些移栽期显著不同的区域内,PF 可能不能提供精准的物候估测。因此,本研究使用动态阈值算法来获取移栽日期,并在 PF 初始化之前,在初始的 BBCH 中使用多层决策树。

Study area and datasets

2.1. Study area

中国广东台山县

2.2. Datasets

(a) Sentinel-1A:IW,Level 1,Ground Range Detected (GRD),12 天重访周期,C 波段

(b) Sentinel-2A/B:Multi Spectral Instrument (MSI),L2A products,5 天重访周期

(c) 现场调查获取的物候信息

        ground campaign:数据收集的日期与 Sentinel-1A 获取日期相对应,3个月 每隔12天,共进行了 9 次,一共获取了代表 20 个水稻田的 28332 个像元(训练集 180 个,验证集 28152 个)。

Methodology

3.1. Pre-processing of Sentinel-1&2 images

        对 Sentinel-1A L1 GRD 产品的预处理包括 5 个步骤:

(1) 轨道校正:提供精确的卫星位置和速度的信息

(2) 辐射定标:将像元值转换为表征反射表面的真实后向散射

(3) 斑点噪声滤波(Refined Lee,7*7 滑动窗口):减少斑点噪声,提高图像质量。

(4) 地形校正(range doppler terrain correction):使用 SRTM DEM,使得影像的几何表示更接近真实世界。SRTM DEM:Shuttle Radar Topography Mission digital elevation model

(5) 将后向散射系数转换为 dB

        Sentinel-2A/B L2A 产品 是 UTM/WGS84 投影下的正射影像,像元值反映了大气底层反射率。本研究使用 Sentinel-2 的波段4(红)和8(近红外)来计算 NDVI。

3.2. Algorithm of rice mapping

大致思路是:首先利用 ISODATA 聚类(8 类)去除了水体、建筑、森林,再利用 ISODATA 聚类 对剩下的地物进行语义分割,得到一些 polygon。然后利用 SSM 进行水稻判别,若某个 polygon 中大部分都是水稻,则将该 polygon 识别为水稻。

3.2.1. Spectral similarity measures (SSM)

Homayouni, S., Roux, M., 2007. Hyperspectral Image Analysis for Material Mapping Using Spectral Matching (ISPRS Congress Proceedings).

3.2.2. The processing of NDVI

3.3. A dynamic threshold algorithm for transplanting date retrieval

该方法使用了不同长度的时间间隔。随着 Sentinel-1A 影像数量的增加,移栽日期也不断更新。

基于3.2 水稻提取,从一个像元的 Seninel-1A 时间序列提取一个向量,并从该向量生产两个向量(t, Diff)。 向量 t 为影像的获取日期(DOY),向量Diff 表示之间的差值。 向量 代表水稻的后向散射系数,与获取日期相对应。

(1) 检索 后向散射系数 小于 -18dB 的日期。

(2) 检索 Diff(j) 大于 Thr_diff 且 Diff(j + 12) 大于 0 dB 的日期。Thr_diff 是一个大于 0.5 dB 的数,表示一个非恒定的阈值。这些日期的数量须小于3,确定阈值的方法如图 Figure 4 所示。

      理解:移栽日期后,后向散射系数上升。

(3) 对上述两步骤得到的日期做交集,得到同时满足上述两个要求的日期。

(4) 对得到的日期做进一步验证,并获取 PTD(post-transplanting date,移栽后日期)。

      i. 该日期12天后的日期所对应的后向散射系数小于-17dB。

      ii. 该日期对应的后向散射系数 和  都在 -21 和 -13 dB 之间。

      iii. 在移栽日期到之间,Diff (t) 小于 0 的天数小于 3。

      iiii. Diff (tx) ≥ -2 dB。

3.4. A hierarchical tree for the initial BBCH setting

3.5. Algorithm for phenology estimations

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值