深度学习| IOU Loss(包含代码实现)

本文详细介绍了IOU(交并比)及其在图像分割中的Loss函数IOULoss的计算方法,与DiceLoss、交叉熵损失等进行了对比,讨论了它们在处理类别不平衡时的优势和劣势。
摘要由CSDN通过智能技术生成

IOU

IOU(Intersection over Union)是交并比,用于衡量语义分割任务中预测结果与真实标签之间的相似度。

I O U = ∣ X ∩ Y ∣ ∣ X ∪ Y ∣ IOU=\frac{|X\cap Y|}{|X\cup Y|} IOU=XYXY

在这里插入图片描述

IOU=某类别的交集区域 / 某类别的并集区域

对于图像分割的IOU评价来说,IOU公式可以写成:

I O U = T P T P + F N + F P IOU=\frac{TP}{TP+FN+FP} IOU=TP+FN+FPTP

IOU Loss

公式

I O U   L o s s = − l n ( I O U ) IOU \ Loss=-ln(IOU) IOU Loss=ln(IOU)

或者

I O U   L o s s = 1 − I O U IOU \ Loss=1-IOU IOU Loss=1IOU

当两者完全重合的时候IOU等于1,IOU Loss等于0。

代码

class IouLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super(IouLoss, self).__init__()
        self.reduction = reduction
        
    def forward(self, inputs, targets, smooth=1):
        # 该代码是二分类代码
        """
            output : NxCxHxW Variable
            target : NxHxW LongTensor
        """
        # 如果inputs没有归一化可以先归一化
        inputs = F.softmax(inputs,dim=1)
        # 因为loss计算的是pred和targets的正负样本交集并集,所以pred中的预测值(0~1)需要转为0和1的标签值
        # inputs从NxCxHxW装变为NxHxW,且里面不是预测值而是0和1标签值
        inputs = torch.argmax(inputs, 1).squeeze(0)# 大于0.5概率变0或者1
        # IOU公式计算
        intersection = (inputs * targets).sum()
        total = (inputs + targets).sum()
        union = total - intersection 
        
        Iou_loss = 1- (intersection + smooth)/(union + smooth)# smooth防止分母为0
        
        if self.reduction == 'mean':
            return Iou_loss.mean()
        elif self.reduction == 'sum':
            return Iou_loss.sum()
        else:
            return Iou_loss

对比其它Loss

图像分割常见且之间博客文章写过的Loss有:交叉熵损失函数CE、带权重交叉熵损失函数WCE、Dice Loss以及Focal Loss

之前文章详细介绍过这几个loss之间的关系,再简单复述一下。
在图像分割中,CE计算的是每个像素点预测值和lable值之间的差异,但是当类别极度不平衡的时候,由于对每种类别都平等对待差异,会让训练结果偏向类别数更多的;WCE是在CE基础上给不同类别计算Loss的时候,前面加入的了一个权重,让类别数量多的权重小,从而来解决类别不平衡问题;Focal Loss在CE的基础上除了加入类别权重,还加入了样本难易权重,来让训练结果不会偏向易分类样本。

而其中Dice其公式为:
D i c e ( X , Y ) = 2 ∗ ∣ X ∩ Y ∣ ∣ X ∣ + ∣ Y ∣ = 2 T P 2 T P + F N + F P Dice(X,Y)=\frac{2*|X\cap Y|}{|X|+|Y|}=\frac{2TP}{2TP+FN+FP} Dice(X,Y)=X+Y2XY=2TP+FN+FP2TP
Dice Loss在计算 ∣ X ∩ Y ∣ |X\cap Y| XY的时候,因为背景类别label为0,所以可以mask掉背景,而更关注于前景。从而在前景类别不平衡的时候,可以更关注类别数量少的前景。

从Dice和IOU公式上,可以看到很明显的相似性:
I O U = ∣ X ∩ Y ∣ ∣ X ∪ Y ∣ = ∣ X ∩ Y ∣ ∣ X ∣ + ∣ Y ∣ − ∣ X ∩ Y ∣ = T P T P + F N + F P IOU=\frac{|X\cap Y|}{|X\cup Y|}=\frac{|X\cap Y|}{|X|+|Y|-|X\cap Y|}=\frac{TP}{TP+FN+FP} IOU=XYXY=X+YXYXY=TP+FN+FPTP

IOU计算TP比Dice要少一次,TP也就是 ∣ X ∩ Y ∣ |X\cap Y| XY,两者是比较相似的,其实差不多。

CE相当于是只考虑了每个像素作为独立样本,而Dice Loss和IOU Loss是以一种更整体的方式看待预测输出。但是Dice Loss和IOU Loss都会容易训练不稳定,因为其是通过mask背景从而关注前景,会存在前景分割很好但是背景分得不好,但是loss也很低的情况。Dice Loss和IOU Loss最好和CE等能够考虑到背景相似性的损失函数结合使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值