Accelerating the Super-Resolution Convolutional Neural Network

题目:Accelerating the Super-Resolution Convolutional Neural Network加速SRCNN
作者:Chaos Dong
实验室:香港中文大学
发表时间:2016
发表地方:CVPR
本篇是看了项目介绍:http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html

摘要

SRCNN作为一个成功的图象超分辨深度学习模型,证明了其比过去手动模型优秀,再速度和重建质量上都优秀。但是它计算成本高,无法实时处理,限制了实际应用。

本文旨在加速SRCNN。提出了一个a compact hourglass-shape CNN structure紧凑的沙漏型CNN结构,为了更快和更好的超分辨。

主要从三个方面重新设计。
1在网络最后引入一个解卷积层,然后学习从低分辨率图像(没有插值)到高分辨率图像的直接映射。
2重新构建了映射层。在映射和扩展之前,缩小输入特征维度。
3我们采用了更小的滤波器尺寸,但更多的映射层。

模型加速了40倍,更好的质量。
我们提供了通用CPU参数设置,能够实时处理,质量不变。针对不同升级因子的快速训练和测试,提出了相应的转移策略。

在这里插入图片描述
图片展示了SRCNN和FSRCNN的结构。FSRCNN和SRCNN主要在三个方面不同。
1FSRCNN使用原始低分辨率的图像作为输入,没有进行双立方插值。最后的解卷积层进行上采样。
2SRCNN的非线性映射被FSRCNN的三个步骤取代,三个步骤是收缩、映射、扩展。
3FSRCNN采用了更小的滤波器,有更好的表现,更小的计算成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值