Ubuntu下查看cuda版本的两种方法

本文介绍了在Ubuntu系统中检查CUDA版本的两种方法。方法一是通过读取/usr/local/cuda/version.txt文件,方法二是使用nvidia-smi命令,不仅查看显存占用,还显示CUDA版本信息。对于两者结果不一致的情况,文章引用了关于驱动API和运行API区别的解释。

参考资料:https://blog.csdn.net/qq_16525279/article/details/80662217

  在安装Pytorch等深度学习框架的时候,我们往往需要检查是否和cuda版本匹配。在Ubuntu系统下查看cuda版本的方法,我发现有两个。

方法一:

  比较常用的一个方法是使用如下命令:

cat /usr/local/cuda/version.txt

使用该命令的效果如下图所示:

在这里插入图片描述

方法一使用效果

方法二:

  方法一主要是依据cuda安装时保存的关于版本的txt文件。但是这个txt文件有可能被清空或者是误删,再用方法一查询的结果就为空。这个时候可以用第二种方法,使用如下命令:

nvidia-smi

这个命令原本是用来查看显存占用情况的,但是也会附带显示cuda的版本信息,显示的效果如下图所示:

在这里插入图片描述

方法二使用效果

附:对于有些网友反馈说,两个方法显示结果不一致的情况,一开始我以为是cuda后续有更新导致的,不过有一篇博文解释了这个情况,据说是有驱动(driver)API版本和运行(runtime)API的区别,这位作者建议参考方法一的结果安装tensorflow和pytorch等程序,大家可以参考一下这篇博文

<think>好的,用户想了解在Ubuntu系统中如何查看CUDA版本。我需要先回想一下常见的方法,确保提供准确的信息。 首先,CUDA版本可以通过多种方式查看。最直接的方法可能是使用nvcc命令,因为nvcc是CUDA的编译器,通常安装CUDA工具包后会包含这个命令。用户可能需要检查是否已经安装了CUDA工具包,如果没有安装的话,这些命令可能无法运行。所以可能需要提醒用户先确认安装情况。 另一个方法查看NVIDIA的驱动版本,然后通过驱动版本对应查找支持的CUDA版本。不过这种方法可能不够直接,因为驱动版本CUDA版本之间有一定的对应关系,但并非一一对应。用户可能需要访问NVIDIA的官方文档来确认具体的对应情况。 此外,CUDA版本信息也可能存储在系统的文件中,比如/usr/local/cuda/version.txt。直接查看这个文件的内容也是一种快速的方法。不过需要注意,如果用户自定义了安装路径,这个文件的位置可能会不同,所以需要说明默认路径的情况。 还有可能需要考虑用户是否安装了多个CUDA版本,这时候可能需要使用update-alternatives来切换版本,或者检查当前环境变量中的PATH设置,确定使用的是哪个版本CUDA。不过这可能稍微复杂一些,对于普通用户来说,可能只需要知道当前活动的CUDA版本。 另外,如果用户安装了PyTorch或TensorFlow等深度学习框架,也可以通过这些框架的接口来查询CUDA版本。例如,在Python中运行一些命令,但这可能超出了用户当前的问题范围,因为他们可能只是想直接在Ubuntu系统中查看,而不是通过编程环境。 需要确保提到的命令正确无误,比如nvcc --version的正确写法,以及cat命令的正确路径。同时,提醒用户如果遇到命令未找到的情况,可能需要将CUDA的路径添加到环境变量中,或者安装相应的工具包。 可能还需要检查是否有其他方法,例如使用nvidia-smi命令,虽然这个命令主要显示GPU和驱动信息,但输出的右上角有时会显示支持的CUDA版本,不过这个CUDA版本是驱动支持的最高版本,而不是当前安装的运行时版本,所以需要特别说明这一点,避免用户混淆。 总结下来,主要的步骤应该是: 1. 使用nvcc --version查看编译器版本,对应CUDA版本。 2. 查看version.txt文件。 3. 使用nvidia-smi查看驱动支持的CUDA版本,但需注意区别。 4. 其他方法,如通过深度学习框架查询。 需要将这些步骤分点说明,结构清晰,便于用户逐步操作。同时,提醒用户不同方法之间的区别,尤其是nvidia-smi显示的信息可能和实际安装的CUDA版本不一致的情况,避免误解。 最后,确保语言简洁明了,使用中文,符合用户的要求。检查是否有遗漏的情况,比如用户可能没有安装nvcc的情况,这时候可能需要指导他们安装build-essential或者CUDA工具包。</think>在Ubuntu系统中查看CUDA版本,可通过以下方法逐步操作: --- ### 方法1:通过 `nvcc` 编译器查看 1. **打开终端** 按 `Ctrl+Alt+T` 或搜索打开终端。 2. **输入命令** ```bash nvcc --version ``` 3. **查看输出** 最后一行会显示CUDA版本,例如: ```bash nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2023 NVIDIA Corporation Built on Wed_Nov_22_10:17:15_PST_2023 Cuda compilation tools, release 12.3, V12.3.107 ``` 此例中CUDA版本为 **12.3**。 --- ### 方法2:查看CUDA版本文件 1. **输入命令** ```bash cat /usr/local/cuda/version.txt ``` 2. **输出示例** ```bash CUDA Version 11.8.89 ``` 此例中CUDA版本为 **11.8**。 --- ### 方法3:通过 `nvidia-smi` 查看(仅显示驱动支持的CUDA版本) 1. **输入命令** ```bash nvidia-smi ``` 2. **查看右上角信息** 输出示例: ```bash +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ ``` 此例中显示驱动支持的最高CUDA版本为 **12.2**(可能与实际安装的CUDA版本不同)。 --- ### 方法4:通过环境变量查看(如果已配置) 1. **输入命令** ```bash echo $CUDA_HOME ``` 2. **输出示例** ```bash /usr/local/cuda-12.3 ``` 路径末尾的 `12.3` 表示CUDA版本。 --- ### 常见问题 1. **命令未找到?** - 若 `nvcc` 未找到,可能是CUDA工具包未安装或环境变量未配置。 - 检查CUDA是否安装:`ls /usr/local | grep cuda` - 添加环境变量: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 2. **`nvidia-smi` 显示的CUDA版本与 `nvcc` 不一致?** - `nvidia-smi` 显示的是驱动支持的最高CUDA版本,而 `nvcc` 显示的是实际安装的CUDA运行时版本。 --- 选择适合你的方法即可快速查看CUDA版本
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值