RNN之LSTM和GRU_Attention机制

LSTM:为解决RNN梯度消失和爆炸问题诞生的。
请添加图片描述
LSTM神经结构
请添加图片描述
![请添加图片描述](https://img-blog.csdnimg.cn/42164c71054c413a8b90f504a96f0cc0.png
在这里插入图片描述
GRU:和LSTM效果差不多,但是好处是参数减少。神经元从4个变成3个,输入变成2个,输出变成1个。请添加图片描述
请添加图片描述
请添加图片描述
Attention机制:对每个输出加入权重,让有用的信息更加有用。请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值