Deep Knowledge Tracing (深度知识追踪)

boss又让我看这块的内容了,刚开学,还不太适应实验室的学习生活,假期闲散惯了操。

1、概述

知识追踪(knowledge tracing)是根据学生过去的答题情况对学生的知识掌握情况进行建模,以便我们能精确预测学生对于知识点的掌握程度,以及学生在下一次的表现。而且精确的知识追踪能让我们抓住学生当前的需求,并进行精准推题,即难易适宜。

早期的知识追踪模型都是依赖于一阶马尔科夫模型,例如贝叶斯知识追踪(Bayesian Knowledge Tracing,BKT)。在本文中引入灵活的循环神经网络(RNN)来处理知识追踪任务。
在这里插入图片描述

知识追踪任务可以概括为:给定一个学生在某一特定学习任务上的表现的观测序列 x0,x1,…,xt ,预测他们在下一次的表现 xt+1 。通常一次交互xt=(qt,at),qt代表该学生回答题目[公式]的正误情况。简单的来说就是知道了学生答了一系列题目,也都知道他都回答对了没,现在我要从题库里再抽一题给他,让模型预测预测他能不能答对,答对的概率是多少,那么如果模型给出的概率是1,代表这题对他来说是太简单了,如果给出的概率为0,就代表这题可能太难了,他八成是做不出来的。

2、表示

贝叶斯知识追踪(BKT)是最流行的知识追踪模型。在BKT模型中提出了一个关于学生知识状态的隐变量(latent variable,不可被直接观察,但对结果有影响)
学生的知识状态由一个二元组表示 {掌握该知识点,没掌握该知识点}。整个模型结构实际上是一个HMM(隐马尔可夫)模型,根据状态转移矩阵来预测下一个状态,根据当前的状态来预测学生的答题结果。而且在BKT模型中认为知识一旦掌握就不会被遗忘。并且在当前的工作中还引入了学生未掌握知识的情况下猜对题目的概率和学生掌握知识的情况下答错题目的概率,学生的先验知识和问题的难度来扩展模型。然而不管有没有这些扩展。
循环神经网络RNN是一种时间序列的模型,信息是基于早期的信息和当前输入的信息进行递归传播的。相对于HMM,RNN具有高维,连续的隐藏状态表示。RNN最大的优势在于能利用更多的早期的信息,尤其是RNN的变种LSTM网络结构。RNN在很多时间序列问题上都取得了非常好的结果,因此将RNN应用到知识追踪上也许会有更好的结果。

在这里我们可以用传统的RNN或者是LSTM模型。在将数据输入到模型之前我们要将输入的数据转换成向量表示(输入的数据就是我们观测到的学生做题的结果)。输入值的向量表示有两种方式:

1)one-hot表示。 假设在我们的模型中的数据中涉及到M个知识点,所有的题目都属于这M个知识点,每道题的结果有两种 {对,错},对于某一道属于第 i 个知识点,做对时向量表示为第 M+i 个位置为1,其余位置为0;做错时第 i 个位置为1,其余位置为0,向量总长度为2M(注意整个模型只关注题目所属知识点,和做题的结果)。one-hot 的表示比较方便,但是一旦知识点的数量非常大之后,向量就会变得高维、稀疏。

2)通过压缩感知算法将高维稀疏的输入数据进行压缩到低维空间( log2M )中。

输出结果 yt 是一个长度为 M 的向量,向量中的每一个值描述的是对应的知识点的掌握概率(或者说对应的知识点下的题目答对的概率)。因此,整个序列就是根据前 t−1 个时间步的信息来预测 第 i 步对各知识点的掌握情况。

3.1、DKT的优势

很多研究表明DKT模型在各种开源数据集上的表现基本都由于传统的BKT模型。相关论文表明DKT的优势主要在于:
1.近因效应
  在BKT模型中假定学生一旦掌握某一知识点,对该知识点就不会遗忘,学生在以后做到属于该知识点的题目时往往就会表现很好。而实际上并不是这样的,时间久了,学生也可能会遗忘之前掌握的知识点。而DKT模型能很好的捕捉学生最近的表现来预测学生的做题结果,能更多的利用学生最近的表现。
2.上下文试验序列
  学生在做题的过程中,可能是多个知识点的题交叉练习,例如学生在知识点A,B 上的做题顺序是 A1−B1−A2−B2−A3−B3 。BKT只能在单个知识点建模,无法将学生这样的做题顺序给表述出来。而DKT能针对多个知识点建模,能很好的表述这样的做题顺序。
3.知识点内在相关性
  实际情况中,知识点与知识点之间是具有相关性的,如论文中的例子,X-截距、Y-截距和线性方程等之间都是具有很强的相关性的。BKT由于只能对单个知识点建模,因此无法将这些相关性表示出来。而DKT可以对多个知识点建模,且神经网络可以根据学生的做题结果获得知识点之间的关系。
4.个体之间的能力差异
  DKT 能根据该学生在各个知识点上的表现情况来获得学生的平均能力(该能力能一定程度代表学生的学习能力),而BKT 由于只能在单个知识点上建模,因此无法获得学生在各知识点上的平均水平。

说了这么多,无非就是DKT比BKT多了时序记忆、多点建模,可获得多点间关系

3.2、DKT的不足

1)模型没法重构当前的输入结果
2)在时间序上学生对知识点的掌握度不是连续一致,而是波动的

4、模型

本文分别用带sigmoid的普通RNN,LSTM来建立模型。其本质是一个Seq2Seq的RNN模型
RNN公式及图解
在这里插入图片描述
上图是DKT模型按照时间展开的示意图,其输入序列 x1,x2,x3…对应了 t1,t2,t3…时刻学生答题信息的编码,隐层状态 h1,h2,h3…对应了各个时刻学生的知识点掌握情况,模型的输出序列 y1,y2,y3…对应了各时刻学生回答题库中的所有习题答对的概率。
在这里插入图片描述
现在以上图为例来看看模型的各层结构。简单起见,假设题库总共有4道习题,那么首先可以确定的输出层的节点数量为4,对应了各题回答正确的概率。接着,如果我们对输出采用one-hot编码输入层的节点数就是题目数量答题结果 : 4 * 2 = 8个。

首先将输入层全连接到RNN的隐层,接着建立隐层到输出层的全连接,最后使用Sigmoid函数作为激活函数,一个基础的DKT模型就构建完毕了。接着为了训练模型,定义如下的损失函数:

在这里插入图片描述

LSTM
在这里插入图片描述可以明显看出,LSTM更加复杂更加强大。LSTM中的隐藏单元(latent units)会保留他们的值,直到被遗忘门(forget gate)明确清除。

5、序列的输入和输出

输入

将学生做题的情况转化为固定长度的输入向量xt
①若题目为少量的M个单知识点,则使用one-hot表示,ht= {qt, at},
②若为大量M,使用压缩感知,将高维向量由随机低维向量表示。d维的向量k稀疏信号可以从klogd随机线性投影中精确恢复。
这篇只涉及①,即one-hot表示,因为这种方法也容易扩展到在定长向量中捕获更复杂的学生交互方面。

输出

输出yt是一个长度等于问题数量的向量,其中每个条目代表学生正确回答特定问题的预测概率。

6、优化及应用

通过在小批量上使用随机梯度下降来最小化。为了防止训练过程中的过拟合,通过截断范数高于阈值的梯度的长度来防止梯度随着时间的推移而“爆炸”。

DKT旨在根据学生过去行为来预测未来表现:
1、最大作用就是选择最优课程推荐给学生
2、可以进一步应用于发现数据中潜在结构或概念的任务

7、三个数据集

在三个数据集上测试预测学生成绩的能力:模拟数据、学院数据和助教基准数据。对于非模拟数据,我们使用5倍交叉验证来评估我们的结果,在所有情况下,超参数都是从训练数据中学习的。在每个数据集上,我们测量曲线下的面积(AUC)。我们将DKT的结果与标准BKT进行比较,并在可能的情况下与BKT的最佳变体进行比较。此外,我们将我们的结果与通过简单计算学生获得特定正确练习的边际概率所做的预测进行比较。
在这里插入图片描述
所有测试数据集的AUC结果。BKT是标准的BKT。BKT*是最佳变体。DKT是使用LSTM的DKT的结果。

8、结果

发现RNN成功捕捉到了相似题目之间的关联,将同一概念下的题目如函数、几何聚到了一起。

我们发现RNN应用于教育中的知识追踪问题,在助教基准可汗数据集上显示出优于现有技术水平的性能。我们新模型的两个特别有趣的新特性是:
(1)它不需要专家注释(它可以自己学习概念模式)
(2)它可以对任何可以矢量化的学生输入进行操作。
RNNs相对于简单隐马尔可夫方法的一个缺点是,它们需要大量的训练数据,因此非常适合在线教育环境,但不适合小教室环境。

  • 5
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值