目标检测--Faster R_CNN

1、faster R_CNN流程步骤
1)将图像输入网络得到相应的特征图
2)使用RPN结构生成候选框,将RPN生成的候选框投影到特征图上得到相应的特征矩阵
3)将每个矩阵通过ROI pooling层放缩到7x7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。
RPN+Fast R_CNN2、RPN
在这里插入图片描述cls layer预测的是前景和背景的概率,reg layer预测的是中心点的x,y以及w,h。
对于特征图上的每个3x3的滑动窗口,计算出滑动窗口中心点对应原始图像上的中心点,计算出k个anchor box(注意和proposal的区别)。
在这里插入图片描述在这里插入图片描述对于一张1000x600x3的图像,大约有60x40x9(20k)个anchor,忽略跨越边界的anchor以后,剩下约6k个anchor。对于RPN生成的候选框之间存在大量的重叠,基于候选框的cls得分,采用非极大值抑制,IOU设为0.7,这样每张图片只剩2k个候选框。

3、RPN Multi-task Loss
在这里插入图片描述在这里插入图片描述
4、Fast R_CNN Multi-task Loss
在这里插入图片描述在这里插入图片描述5、Faster R_CNN训练
现在:
直接采用RPN Loss+Fast R_CNN Loss联合训练的方法
原论文:
在这里插入图片描述6、Faster R_CNN框架
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值