【目标检测--tricks】FPN和PAN

本文详细介绍了FPN(Feature Pyramid Network)结构,它是利用CNN模型的多尺度特征来生成多维度特征表达,常用于目标检测和语义分割任务。随后,文章探讨了PAN(PANet)结构,它在FPN的基础上增加了下采样融合的特征金字塔,通过shortcut操作进一步提升特征表达能力。PAN的实现代码展示了如何构建这一网络层次。
摘要由CSDN通过智能技术生成

一、FPN结构

FPN结构图:
在这里插入图片描述FPN通过利用常规CNN模型内部从底至上各个层对同一scale图片不同维度的特征表达结构,提出了一种克有效在单一图片视图下生成对其的多维度特征表达的方式。它可以有效地赋能常规CNN模型,从而可以生成出表达能力更强地feature maps以供下一阶段计算机视觉任务(如object detection/semantic segmentation等)来使用。本质上说它是一种加强主干网络CNN特征表达的方法。

二、PAN结构

PAN即PANet,结构图如下:
在这里插入图片描述简答来说,就是在FPN上采样融合的特征金字塔之后,又增加了一个下采样融合的特征金字塔。原版的PAN,最后采用下采样融合时使用的是shortcut操作而不是YOLOV4中的concat操作。PAN代码如下:

class PAN(nn.Module):
    def __init__(self, planes):
        super
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值