一、yoloX的改进
由于yoloV4和yoloV5存在过度优化的问题,因此yoloX以yoloV3和Darknet 53为基线,采用了Darknet 53骨干网的结构架构和SPP层,改变了一些训练策略:
- 增加了EMA权重更新、consine lr schedule、IoU损失和IoU感知分支,使用BCE Loss训练cls和obj,IoU Loss作为test分支。
- 由于RandomResizedCrop和马赛克增强重叠,因此只采用了RandomHorizontalFlip,ColorJitter、multi-scale和mosaic用于数据增强。
- 使用Mixup增强,不使用Imagenet预训练方法。
二、yoloX结构框架
三、Decoupled Head(解耦头部)
思想:分离分类和定位操作
好处:(1)提高了了yoloX收敛速度;(2)实现了yolo的端对端性能。
结构图: