【目标检测】yoloX算法详解

一、yoloX的改进

由于yoloV4和yoloV5存在过度优化的问题,因此yoloX以yoloV3和Darknet 53为基线,采用了Darknet 53骨干网的结构架构和SPP层,改变了一些训练策略:

  1. 增加了EMA权重更新、consine lr schedule、IoU损失和IoU感知分支,使用BCE Loss训练cls和obj,IoU Loss作为test分支。
  2. 由于RandomResizedCrop和马赛克增强重叠,因此只采用了RandomHorizontalFlip,ColorJitter、multi-scale和mosaic用于数据增强。
  3. 使用Mixup增强,不使用Imagenet预训练方法。
    在这里插入图片描述

二、yoloX结构框架

在这里插入图片描述

三、Decoupled Head(解耦头部)

思想:分离分类和定位操作
好处:(1)提高了了yoloX收敛速度;(2)实现了yolo的端对端性能。
结构图:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值