一、 l l l部图的概念与特征
l
l
l部图定义:
完全
l
l
l部图定义:
如果在一个
l
l
l部图G中,任意部
V
i
V_i
Vi中的每个顶点同G中其它各部中的每个顶点均邻接,称G为完全
l
l
l部图。记作:
G
=
K
n
1
,
n
2
,
⋯
 
,
n
l
(
n
i
=
∣
V
i
∣
,
1
≤
i
≤
l
)
G=K_{n_1, n_2,\cdots, n_l}(n_i = |V_i|, 1 \le i \le l)
G=Kn1,n2,⋯,nl(ni=∣Vi∣,1≤i≤l)
完全
l
l
l等部图:
各部顶点数相同的完全
l
l
l部图
n阶完全
l
l
l几乎等部图:
各部顶点数差值不超过1,记为
T
l
,
n
T_{l,n}
Tl,n
定理1:连通偶图的2部划分是唯一的。
定理2:n阶完全偶图
K
n
1
,
n
2
K_{n_1,n_2}
Kn1,n2的边数
m
=
n
1
n
2
m=n_1n_2
m=n1n2,且有:
m
≤
[
n
2
4
]
m\le [\frac{n^2}{4}]
m≤[4n2]
定理3:n阶l部图G有最多边数的充要条件是
G
≌
T
l
,
n
G ≌ T_{l,n}
G≌Tl,n。
二、托兰定理及其应用
定义:设G和H是两个n阶图,称G度弱于H,如果存在双射μ:V(G)→V(H),使得:
∀
v
∈
V
(
G
)
,
有
d
G
(
v
)
≤
d
H
(
μ
(
v
)
)
\forall v \in V(G), 有 d_G(v)\le d_H(\mu(v))
∀v∈V(G),有dG(v)≤dH(μ(v))则称G度弱于H,一定有
m
(
G
)
≤
m
(
H
)
m(G)\le m(H)
m(G)≤m(H)。
定理4:若n阶简单图G不包含
K
l
+
1
K_{l+1}
Kl+1,则G度弱于某个完全 l 部图 H,且若G具有与 H 相同的度序列,则:
G
≌
H
G ≌H
G≌H。
托兰定理:若G是简单图,并且不包含 K l + 1 K_{l+1} Kl+1,则: m ( G ) ≤ m ( T l , n ) m(G) \le m(T_{l,n}) m(G)≤m(Tl,n),仅当 G ≌ T l , n G ≌T_{l,n} G≌Tl,n时有 m ( G ) = m ( T l , n ) m(G)= m(T_{l,n}) m(G)=m(Tl,n)。