凸函数及其性质

1. 定义

1.1 定义一
  • 如果对任意 x 1 x_1 x1 x 2 x_2 x2总有 f [ α x 1 + ( 1 − α ) x 2 ] ≥ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1 - \alpha )x_2] \ge \alpha f(x_1) + (1 - \alpha )f(x_2) f[αx1+(1α)x2]αf(x1)+(1α)f(x2),其中 0 ≤ α ≤ 1 \displaystyle 0 \le \alpha \le 1 0α1,则称 f ( x ) f(x) f(x)上凸函数
  • 如果对任意 x 1 x_1 x1 x 2 x_2 x2 x 1 ≠ x 2 x_1 \ne x_2 x1=x2,总有 f [ α x 1 + ( 1 − α ) x 2 ] > α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1 - \alpha )x_2] \gt \alpha f(x_1) + (1 - \alpha )f(x_2) f[αx1+(1α)x2]>αf(x1)+(1α)f(x2),其中 0 < α < 1 0 \lt\alpha \lt 1 0<α<1,则称 f ( x ) f(x) f(x)严格上凸函数
1.2 定义二
  • 如果对任意 x 1 x_1 x1 x 2 x_2 x2总有 f [ α x 1 + ( 1 − α ) x 2 ] ≤ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1 - \alpha )x_2]\le \alpha f(x_1) + (1 - \alpha )f(x_2) f[αx1+(1α)x2]αf(x1)+(1α)f(x2),其中 0 ≤ α ≤ 1 \displaystyle 0 \le \alpha \le 1 0α1,则称 f ( x ) f(x) f(x)下凸函数
  • 如果对任意 x 1 x_1 x1 x 2 x_2 x2 x 1 ≠ x 2 x_1 \ne x_2 x1=x2,总有 f [ α x 1 + ( 1 − α ) x 2 ] < α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1 - \alpha )x_2] \lt \alpha f(x_1) + (1 - \alpha )f(x_2) f[αx1+(1α)x2]<αf(x1)+(1α)f(x2),其中 0 < α < 1 0 \lt\alpha \lt 1 0<α<1,则称 f ( x ) f(x) f(x)严格下凸函数

2. 琴生(Jenson)不等式

  • 对于上凸函数, f ( E [ X ] ) ≥ E [ f ( x ) ] f(E[X]) \ge E[f(x)] f(E[X])E[f(x)] ∑ k = 1 q λ k f ( x k ) ≤ f ( ∑ k = 1 q λ k x k ) \displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k) k=1qλkf(xk)f(k=1qλkxk),其中 λ 1 , λ 2 , ⋯   , λ q \lambda_1,\lambda_2,\cdots,\lambda_q λ1,λ2,,λq为正实数(或非负实数,后者去除无影响的 λ i = 0 \lambda_i = 0 λi=0的项即为前者,故二者等价)且 ∑ k = 1 q λ k = 1 \displaystyle \sum_{k=1}^q \lambda_k = 1 k=1qλk=1;对于严格上凸函数,上述等号成立当且仅当 x 1 = x 2 = ⋯ = x q x_1 = x_2 = \cdots = x_q x1=x2==xq
  • 对于下凸函数, f ( E [ X ] ) ≤ E [ f ( x ) ] f(E[X])\le E[f(x)] f(E[X])E[f(x)] ∑ k = 1 q λ k f ( x k ) ≥ f ( ∑ k = 1 q λ k x k ) \displaystyle \sum_{k=1}^q \lambda_k f(x_k) \ge f(\sum_{k=1}^q \lambda_k x_k) k=1qλkf(xk)f(k=1qλkxk),其中 λ 1 , λ 2 , ⋯   , λ q \lambda_1,\lambda_2,\cdots,\lambda_q λ1,λ2,,λq为正实数(或非负实数,后者去除无影响的 λ i = 0 \lambda_i = 0 λi=0的项即为前者,故二者等价)且 ∑ k = 1 q λ k = 1 \displaystyle \sum_{k=1}^q \lambda_k = 1 k=1qλk=1;对于严格下凸函数,上述等号成立当且仅当 x 1 = x 2 = ⋯ = x q x_1 = x_2 = \cdots = x_q x1=x2==xq

↓ \downarrow 证明过程如下 ↓ \downarrow

2.1 上凸函数

证明:因为 λ i \lambda_i λi均为正实数,故有
   f ( ∑ k = 1 q λ k x k ) = f ( λ 1 x 1 + ∑ k = 2 q λ k ∑ k = 2 q λ k x k ∑ k = 2 q λ k ) ≥ λ 1 f ( x 1 ) + ∑ k = 2 q λ k ⋅ f ( ∑ k = 2 q λ k x k ∑ k = 2 q λ k ) \displaystyle f( \sum_{k=1}^q \lambda_k x_k) = f(\lambda_1 x_1 + \sum_{k=2}^q \lambda_k {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}) \ge \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}) f(k=1qλkxk)=f(λ1x1+k=2qλkk=2qλkk=2qλkxk)λ1f(x1)+k=2qλkf(k=2qλkk=2qλkxk)
         = λ 1 f ( x 1 ) + ∑ k = 2 q λ k ⋅ f ( λ 2 ∑ k = 2 q λ k x 2 + ∑ k = 3 q λ k ∑ k = 2 q λ k ⋅ ∑ k = 3 q λ k x k ∑ k = 3 q λ k ) \displaystyle = \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\lambda_2 \over \sum_{k=2}^q \lambda_k} x_2 + {\sum_{k=3}^q \lambda_k \over \sum_{k=2}^q \lambda_k} \cdot {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k}) =λ1f(x1)+k=2qλkf(k=2qλkλ2x2+k=2qλkk=3qλkk=3qλkk=3qλkxk)
         ≥ λ 1 f ( x 1 ) + λ 2 f ( x 2 ) + ∑ k = 3 q λ k ⋅ f ( ∑ k = 3 q λ k x k ∑ k = 3 q λ k ) \displaystyle \ge \lambda_1 f(x_1) + \lambda_2 f(x_2) + \sum_{k=3}^q \lambda_k \cdot f({\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k}) λ1f(x1)+λ2f(x2)+k=3qλkf(k=3qλkk=3qλkxk)
         ≥ ⋯ ≥ ∑ k = 1 q λ k f ( x k ) \displaystyle \ge \cdots \ge \sum_{k=1}^q \lambda_k f(x_k) k=1qλkf(xk)

2.2 严格上凸函数

证明由定义可知,对于严格上凸函数, f [ α x 1 + ( 1 − α ) x 2 ] ≥ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1 - \alpha )x_2] \ge \alpha f(x_1) + (1 - \alpha )f(x_2) f[αx1+(1α)x2]αf(x1)+(1α)f(x2)等号成立时当且仅当 x 1 = x 2 x_1 = x_2 x1=x2 。而根据上文对于上凸函数对于 ∑ k = 1 q λ k f ( x k ) ≤ f ( ∑ k = 1 q λ k x k ) \displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k) k=1qλkf(xk)f(k=1qλkxk)不等式推导过程可知,若上凸函数为严格上凸函数,则第一个 ≥ \ge 处等号成立当且仅当: x 1 = ∑ k = 2 q λ k x k ∑ k = 2 q λ k x_1 = {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k} x1=k=2qλkk=2qλkxk;第二个 ≥ \ge 处等号成立当且仅当: x 2 = ∑ k = 3 q λ k x k ∑ k = 3 q λ k x_2 = {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k} x2=k=3qλkk=3qλkxk ⋯ \cdots ;第 q − 1 q-1 q1 ≥ \ge 处等号成立当且仅当: x q − 1 = ∑ k = q q λ k x k ∑ k = q q λ q = x q x_{q-1} = {\sum_{k=q}^q \lambda_k x_k \over \sum_{k=q}^q \lambda_q} = x_q xq1=k=qqλqk=qqλkxk=xq。所有等号都成立则以上条件都需满足,对以上条件反向推导可得: x q = x q − 1 x_q = x_{q-1} xq=xq1 x q − 2 = ∑ k = q − 1 q λ k x k ∑ k = q − 1 q λ k = λ q − 1 x q − 1 + λ q x q λ q − 1 + λ q = x q − 1 x_{q-2} = {\sum_{k=q-1}^q \lambda_k x_k \over \sum_{k=q-1}^q \lambda_k} = {\lambda_{q-1} x_{q-1} + \lambda_{q} x_q \over \lambda_{q-1} + \lambda_{q}} = x_{q-1} xq2=k=q1qλkk=q1qλkxk=λq1+λqλq1xq1+λqxq=xq1 ⋯ \cdots x 1 = x 2 x_1 = x_2 x1=x2

∑ k = 1 q λ k f ( x k ) ≤ f ( ∑ k = 1 q λ k x k ) \displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k) k=1qλkf(xk)f(k=1qλkxk)等号成立当且仅当 x 1 = x 2 = ⋯ = x q x_1 = x_2 = \cdots = x_q x1=x2==xq

2.3 下凸函数

证明:因为 λ i \lambda_i λi均为正实数,故有
   f ( ∑ k = 1 q λ k x k ) = f ( λ 1 x 1 + ∑ k = 2 q λ k ∑ k = 2 q λ k x k ∑ k = 2 q λ k ) ≤ λ 1 f ( x 1 ) + ∑ k = 2 q λ k ⋅ f ( ∑ k = 2 q λ k x k ∑ k = 2 q λ k ) \displaystyle f( \sum_{k=1}^q \lambda_k x_k) = f(\lambda_1 x_1 + \sum_{k=2}^q \lambda_k {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}) \le \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k}) f(k=1qλkxk)=f(λ1x1+k=2qλkk=2qλkk=2qλkxk)λ1f(x1)+k=2qλkf(k=2qλkk=2qλkxk)
         = λ 1 f ( x 1 ) + ∑ k = 2 q λ k ⋅ f ( λ 2 ∑ k = 2 q λ k x 2 + ∑ k = 3 q λ k ∑ k = 2 q λ k ⋅ ∑ k = 3 q λ k x k ∑ k = 3 q λ k ) \displaystyle = \lambda_1 f(x_1) + \sum_{k=2}^q \lambda_k \cdot f({\lambda_2 \over \sum_{k=2}^q \lambda_k} x_2 + {\sum_{k=3}^q \lambda_k \over \sum_{k=2}^q \lambda_k} \cdot {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k}) =λ1f(x1)+k=2qλkf(k=2qλkλ2x2+k=2qλkk=3qλkk=3qλkk=3qλkxk)
         ≤ λ 1 f ( x 1 ) + λ 2 f ( x 2 ) + ∑ k = 3 q λ k ⋅ f ( ∑ k = 3 q λ k x k ∑ k = 3 q λ k ) \displaystyle \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \sum_{k=3}^q \lambda_k \cdot f({\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k}) λ1f(x1)+λ2f(x2)+k=3qλkf(k=3qλkk=3qλkxk)
         ≤ ⋯ ≤ ∑ k = 1 q λ k f ( x k ) \displaystyle \le \cdots \le \sum_{k=1}^q \lambda_k f(x_k) k=1qλkf(xk)

2.4 严格下凸函数

证明由定义可知,对于严格下凸函数, f [ α x 1 + ( 1 − α ) x 2 ] ≤ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1 - \alpha )x_2] \le \alpha f(x_1) + (1 - \alpha )f(x_2) f[αx1+(1α)x2]αf(x1)+(1α)f(x2)等号成立时当且仅当 x 1 = x 2 x_1 = x_2 x1=x2 。而根据上文对于下凸函数对于 ∑ k = 1 q λ k f ( x k ) ≤ f ( ∑ k = 1 q λ k x k ) \displaystyle \sum_{k=1}^q \lambda_k f(x_k)\le f(\sum_{k=1}^q \lambda_k x_k) k=1qλkf(xk)f(k=1qλkxk)不等式推导过程可知,若下凸函数为严格下凸函数,则第一个 ≤ \le 处等号成立当且仅当: x 1 = ∑ k = 2 q λ k x k ∑ k = 2 q λ k x_1 = {\sum_{k=2}^q \lambda_k x_k \over \sum_{k=2}^q \lambda_k} x1=k=2qλkk=2qλkxk;第二个 ≤ \le 处等号成立当且仅当: x 2 = ∑ k = 3 q λ k x k ∑ k = 3 q λ k x_2 = {\sum_{k=3}^q \lambda_k x_k \over \sum_{k=3}^q \lambda_k} x2=k=3qλkk=3qλkxk ⋯ \cdots ;第 q − 1 q-1 q1 ≤ \le 处等号成立当且仅当: x q − 1 = ∑ k = q q λ k x k ∑ k = q q λ q = x q x_{q-1} = {\sum_{k=q}^q \lambda_k x_k \over \sum_{k=q}^q \lambda_q} = x_q xq1=k=qqλqk=qqλkxk=xq。所有等号都成立则以上条件都需满足,对以上条件反向推导可得: x q = x q − 1 x_q = x_{q-1} xq=xq1 x q − 2 = ∑ k = q − 1 q λ k x k ∑ k = q − 1 q λ k = λ q − 1 x q − 1 + λ q x q λ q − 1 + λ q = x q − 1 x_{q-2} = {\sum_{k=q-1}^q \lambda_k x_k \over \sum_{k=q-1}^q \lambda_k} = {\lambda_{q-1} x_{q-1} + \lambda_{q} x_q \over \lambda_{q-1} + \lambda_{q}} = x_{q-1} xq2=k=q1qλkk=q1qλkxk=λq1+λqλq1xq1+λqxq=xq1 ⋯ \cdots x 1 = x 2 x_1 = x_2 x1=x2

∑ k = 1 q λ k f ( x k ) ≥ f ( ∑ k = 1 q λ k x k ) \displaystyle \sum_{k=1}^q \lambda_k f(x_k) \ge f(\sum_{k=1}^q \lambda_k x_k) k=1qλkf(xk)f(k=1qλkxk)等号成立当且仅当 x 1 = x 2 = ⋯ = x q x_1 = x_2 = \cdots = x_q x1=x2==xq

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今を生きる

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值