tanaka/metR | 绘制3D阴影效果地图

本文介绍了R语言中的tanaka包,用于创建具有3D阴影效果的地图可视化,包括基本用法、样例演示以及如何结合metR和ggplot2进行定制化地图绘制。
摘要由CSDN通过智能技术生成

今天我们再给大家介绍一个优秀的地图可视化绘制包-R-tanaka包(用于绘制具有3d阴影效果的地图可视化作品),主要涉及的内容如下:

  • R-tanaka包简介及样例样式

  • R-ggplot2绘制3d阴影地图

R-tanaka包简介及样例样式

tanaka包实现的方法也称为“浮雕轮廓法(relief contours method)”,“照明轮廓法(illuminated contour method)”或“阴影轮廓线方法(shaded contour lines method)”,tanaka可以通过使用阴影轮廓线来增强地图上地形的表示,使结果看上去像一个类似3D的地图效果。其官网为:https://github.com/rCarto/tanaka。其主要提供两个绘图函数,如下:

  • tanaka() uses a raster object and displays t he map directly;

  • tanaka_contour() builds the isopleth polygon layer.

样例参考

这里我们直接使用官网给的样例进行可视化绘制,代码如下:

library(tanaka)
library(raster)
ras <- raster(system.file("grd/elev.grd", package = "tanaka"))
tanaka(ras, breaks = seq(80,400,20), 
       legend.pos = "topright", legend.title = "Elevation\n(meters)")

得到的可视化结果如下:

tanaka example1

此外,还有以下官网样例:

Example02:

tanaka example2

这里需要注意的是:elevatr包可以实现在线下载DEM数据,相关代码如下:

ras <- get_elev_raster(locations = data.frame(x = c(6.7, 7), y = c(45.8,46)),
                       z = 10, prj = "+init=epsg:4326", clip = "locations")

分别设置了位置(经纬度信息,投影等属性进行DEM数据下载)

Example3:

library(raster)
library(sf)
library(cartography)
library(tanaka)

temp <- tempfile()
data_url <- "http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/GHSL/GHS_POP_GPW4_GLOBE_R2015A/GHS_POP_GPW42015_GLOBE_R2015A_54009_1k/V1-0/GHS_POP_GPW42015_GLOBE_R2015A_54009_1k_v1_0.zip"
download.file(data_url, temp)
unzip(temp, exdir = "pop")
pop2015 <- raster("pop/GHS_POP_GPW42015_GLOBE_R2015A_54009_1k_v1_0/GHS_POP_GPW42015_GLOBE_R2015A_54009_1k_v1_0.tif")
center <- st_as_sf(data.frame(x=425483.8, y=5608290), 
                   coords=(c("x","y")), crs = st_crs(pop2015))
center <- st_buffer(center, dist = 800000)
ras <- crop(pop2015, st_bbox(center)[c(1,3,2,4)])
mat <- focalWeight(x = ras, d = c(10000), type = "Gauss")
rassmooth <- focal(x = ras, w = mat, fun = sum, pad = TRUE, padValue = 30)
bks <- c(0,25,50,100,250,500,750,1000,1750,2500,5000, 7500,10000)
png(filename = "circle.png", width = 800, height = 700, res = 100)
par(mar = c(0,0,1.2,0))
tanaka(x = rassmooth, 
       breaks = bks, 
       mask = center, 
       col = hcl.colors(n = 12, palette = "Inferno"),
       shift = 2500,
       legend.pos = "topleft",
       legend.title = "Inhabitants\nper km2")
plot(st_geometry(center), add = T, border = "white", lwd = 6)
layoutLayer(title = "Smoothed Population Density", 
            author = 'Data : European Commission, Joint Research Centre (JRC); Columbia University, CIESIN (2015): GHS population grid, derived from GPW4.', 
            sources = 'T. Giraud, 2019', scale = F, frame = F, tabtitle = TRUE)
text(-374516.2 ,6408290.0, "Gaussian smoothing, sigma = 10km", adj = 0, font = 3, cex = .8 )
dev.off()

可视化结果如下:

tanaka example3

该图绘制涉及的知识点较多(sf空间数据的基本处理,感兴趣的小伙伴可以看下sf包)

tanaka属性介绍

tanaka(
  x,
  nclass = 8,
  breaks,
  col,
  mask,
  light = "#ffffff70",
  dark = "#00000090",
  shift,
  legend.pos = "left",
  legend.title = "Elevation",
  add = FALSE
)

#解释如下:
Arguments
x :a raster or an sf contour layer (e.g. the result of tanaka_contour()).
(栅格数据或sf轮廓图层(例如tanaka_contour()的结果)
nclass :a number of class.
(等级)
breaks :a vector of break values.
(刻度值)
col :a color palette (a vector of colors).
(调色板(颜色向量))
mask :a mask layer, a POLYGON or MULTIPOLYGON sf object.
(掩码,POLYGON或MULTIPOLYGON的sf对象。)
light :light shadow (NW color).
(浅阴影(NW颜色))
dark :dark shadow (SE color).
(暗阴影(SE颜色))
shift :size of the shadow (in map units).
(阴影的大小(以地图单位为单位))
legend.pos :position of the legend, one of "topleft", "top", "topright", "right", "bottomright", "bottom", "bottomleft", "left" or a vector of two coordinates in map units (c(x, y)). If legend.pos="n" then the legend is not plotted.
(图例的位置,“上左”,“上”,“上右”,“右”,“下右”,“下”,“下左”,“左”或以地图单位表示的两个坐标的向量(c( x,y))。 如果legend.pos =“ n”,则不会绘制图例。)
legend.title :title of the legend.
(图例标题)
add :whether to add the layer to an existing plot (TRUE) or not (FALSE).
(是否将将图层添加到已存在的图上)

R-ggplot2绘制3d阴影地图

tanaka 包毕竟是一个小众地图可视化包,如何能使用ggplot2以及拓展包绘制类似地图效果呢?答案是可以的,我们可以使用 metR包实现该3d地图效果,我们还是以上面的数据为例,首先,我们需要将数据转换成data.frame类型。

数据处理

我们对使用raster包读取的栅格数据ras进行转换:

接下来我们就可以使用ggplot2进行绘制了,这里我们直接给出定制化操作的代码及可视化结果:

library(metR)
library(ggplot2)
library(RColorBrewer)
library(ggtext)
library(showtext)
library(hrbrthemes)

my_colormap <- colorRampPalette(rev(brewer.pal(11,'Spectral')))(32)

map_3d <- ggplot(ras_df, aes(x = lon, y = lat)) +
    geom_contour_fill(aes(z = Elevation)) +
    geom_contour_tanaka(aes(z = Elevation),breaks = seq(80,400,20)) +
    scale_fill_gradientn(colours = my_colormap,name="DEM(m)") +
    #scale_fill_gradient2(low = "#FBDEE1",high = "#1D0809",breaks=seq(80,400,20)) +
    labs(x="",y="",
       title = "Example of <span style='color:#D20F26'>metR::geom_contour_tanaka function</span>",
       subtitle = "processed map charts with <span style='color:#1A73E8'>geom_contour_tanaka()</span>",
       caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +
    theme_ipsum(base_family = "Roboto Condensed") +
    #theme_ft_rc()+
    theme( 
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                                 size = 20, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),
        plot.caption = element_markdown(face = 'bold',size = 12),
      )

最终的可视化效果如下:

当然你可可以更换主题,效果如下:

总结

本期推文,我们继续介绍了优秀的R可视化绘制包-tanaka包以及metR包结合ggplot2实现更加自由的定制化可视化作品绘制,希望大家可以从中获取获取绘图灵感。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值