booth乘法器

文章介绍了Booth编码在减少有符号二进制乘法中部分积数目和提高运算速度方面的作用。通过Booth编码,乘数的二进制形式被转换,降低非零部分积的数量,从而减少加法操作,加速计算过程。举例说明了Radix-2Booth算法以及基4Booth编码表的应用。
摘要由CSDN通过智能技术生成

Booth编码
首先介绍一下波斯编码,可以通过理解下面的等式:


可以证明的是,这三个公式是相等的,一个有符号的二进制数的补码用公式1来表示,可以等价地写成公式2和公式3。公式2其实就对应的2位一组的booth编码,公式3对应的3位一组的booth编码
这个过程就是对Y进行编码的过程。编码之后,乘数Y中的位被划分为不同的组, 每一组包括3位,这些组互相交叠。
Booth编码可以减少部分积的数目(即减少乘数中1的个数),用来计算有符号乘法,提高乘法运算的速度。

 
如上图所示为二进制乘法的过程,也是符合我们正常计算时的逻辑,我们假设有一个8位乘数(Multiplier),它的二进制值为0111_1110,它将产生6行非零的部分积,因为它有6个非零值(即1)。如果我们利用公式2:
将这个二进制值改为1000_00-10,其中低四位中的-1表示负1,可以证明两个值是相等的。
这个变换过程可以这样简单理解,那就是在原值的末尾加辅助位0,变为0111_1110_0,然后利用低位减去高位,就对应-yn-1+yn-2,即得到1000_00-10。其实也对应公式2的对应编码,这样一变换可以减少0的数目,从而减少加的次数,我们只需相加两个部分积,但是最终的加法器必须也能执行减法。这种形式的变换称为booth encoding(即booth编码),它保证了在每两个连续位中最多只有一个是1或-1。部分积数目的减少意味着相加次数的减少,从而加快了运算速度(并减少了面积)。从形式上来说,这一变换相当于把乘数变换成一个四进制形式。波斯编码过程如下:

 

以上是Radix-2 Booth算法,姑且翻译为基2布什算法,以下是一个例子:

7*(-5)= -35

如果设计一个面积小,性能要求不高的乘法器,可以采用迭代的方法,根据流程图描述即可。

以下是基4 Booth编码表,其中A为被乘数,B为乘数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值