GCN最简单的实现

这篇博客介绍了如何使用PyTorchGeometric库实现图卷积网络(GCN)。首先,展示了图数据的结构,包括节点特征、边索引和目标。接着,通过一个简单的例子解释了如何创建和操作图数据。然后,介绍了通用的图分类数据集TUDataset,并展示了数据集的加载和划分方法。最后,给出了一个两层GCN的实现,并进行了训练和测试,验证了模型在图分类任务上的效果。
摘要由CSDN通过智能技术生成

https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html

GCN最简单的实现

PyTorch Geometric中的一个图由的实例描述torch_geometric.data.Data
data.x:具有形状的节点特征矩阵 [num_nodes, num_node_features]
data.edge_index:具有形状和类型的COO格式的图形连接[2, num_edges]torch.long
data.edge_attr:具有形状的边缘特征矩阵 [num_edges, num_edge_features]
data.y:要训练的目标(可以具有任意形状),例如,形状的节点级目标或形状的图形级目标[num_nodes, *][1, *]
data.pos:具有形状的节点位置矩阵 [num_nodes, num_dimensions]

在这里插入图片描述

import torch
from torch_geometric.data import Data
edge_index = torch.tensor([[0, 1, 1, 2],
                           [1, 0, 2, 1]], dtype=torch.long)
x = torch.tensor([[-1], [0], [1]], dtype=torch.float)
data = Data(x=x, edge_index=edge_index)
>>> Data(edge_index=[2, 4], x=[3, 1])

注意edge_index,即定义所有边缘的源节点和目标节点的张量不是索引元组的列表。如果要以这种方式编写索引,则应contiguous在将索引传递给数据构造函数之前转置并调用它:

import torch
from torch_geometric.data import Data
edge_index = torch.tensor([[0, 1],
                           [1, 0],
                           [1, 2],
                           [2, 1]], dtype=torch.long)
x = torch.tensor([[-1], [0], [1]], dtype=torch.float)
data = Data(x=x, edge_index=edge_index.t().contiguous())
>>> Data(edge_index=[2, 4], x=[3, 1])

通用基准数据集

图分类数据
例如,要加载ENZYMES数据集(由6个类中的600个图组成),请输入:

from torch_geometric.datasets import TUDataset
dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES')
>>> ENZYMES(600)
len(dataset)
>>> 600
dataset.num_classes
>>> 6
dataset.num_node_features
>>> 3

现在,我们可以访问数据集中的所有600个图形:

data = dataset[0]
>>> Data(edge_index=[2, 168], x=[37, 3], y=[1])
data.is_undirected()
>>> True

我们可以看到数据集中的第一个图包含37个节点,每个节点具有3个特征。有168/2 = 84个无向边,并且该图恰好分配给一个类别。此外,数据对象仅包含一个图形级目标。
我们甚至可以使用切片,长或字节张量来分割数据集。 例如,要创建90/10训练/测试对,请输入:

train_dataset = dataset[:540]
>>> ENZYMES(540)
test_dataset = dataset[540:]
>>> ENZYMES(60)

如果不确定在拆分之前是否已经对数据集进行了混洗,则可以通过运行以下命令来随机排列数据集:

dataset = dataset.shuffle()
>>> ENZYMES(600)

这等效于:

perm = torch.randperm(len(dataset))
dataset = dataset[perm]
>> ENZYMES(600)

最简单的GCN代码

import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = GCNConv(dataset.num_node_features, 16)
        self.conv2 = GCNConv(16, dataset.num_classes)
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)

构造函数定义了GCNConv两层,它们在我们的网络的前向传递中被调用。请注意,非线性未集成在conv调用中,因此需要在以后应用(在PyTorch Geometric中,所有运算符都保持一致)。在这里,我们选择使用ReLU作为介于两者之间的中间非线性,最后输出整个类数的softmax分布。让我们在训练节点上训练这个模型200个纪元:

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

model.train()
for epoch in range(200):
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()

最后,我们可以在测试节点上评估我们的模型:

model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct / int(data.test_mask.sum())
print('Accuracy: {:.4f}'.format(acc))
>>> Accuracy: 0.8150
以下是使用GCN实现图嵌入的Python代码示例: 首先,我们需要导入必要的库: ```python import numpy as np import tensorflow as tf from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model ``` 接下来,我们定义一个GCN层: ```python class GCNLayer(tf.keras.layers.Layer): def __init__(self, output_dim): super(GCNLayer, self).__init__() self.output_dim = output_dim def build(self, input_shape): self.weight = self.add_weight(name='weight', shape=(input_shape[1], self.output_dim), initializer='glorot_uniform', trainable=True) def call(self, inputs): adj_matrix, features = inputs adj_matrix = tf.cast(adj_matrix, dtype=tf.float32) features = tf.cast(features, dtype=tf.float32) # Normalize adjacency matrix adj_sum = tf.reduce_sum(adj_matrix, axis=1, keepdims=True) adj_inv_sqrt = tf.math.rsqrt(adj_sum) adj_matrix = adj_matrix * adj_inv_sqrt * adj_inv_sqrt # Perform graph convolution output = tf.matmul(adj_matrix, features) output = tf.matmul(output, self.weight) return tf.nn.relu(output) ``` 我们的GCN层有一个输出维度参数,同时使用邻接矩阵和节点特征作为输入。在构建层时,我们定义了一个权重矩阵,该矩阵将用于计算图卷积。在调用中,我们首先对邻接矩阵进行归一化,然后使用归一化的邻接矩阵和节点特征计算图卷积。 接下来,我们定义一个图嵌入模型: ```python class GraphEmbedding(Model): def __init__(self, input_dim, hidden_dim, output_dim): super(GraphEmbedding, self).__init__() self.input_layer = Input(shape=(input_dim,)) self.hidden_layer1 = GCNLayer(hidden_dim)([adj_matrix, self.input_layer]) self.hidden_layer2 = GCNLayer(output_dim)([adj_matrix, self.hidden_layer1]) self.output_layer = Dense(output_dim, activation='softmax')(self.hidden_layer2) def call(self, inputs): x = self.input_layer(inputs) x = self.hidden_layer1([adj_matrix, x]) x = self.hidden_layer2([adj_matrix, x]) return self.output_layer(x) ``` 在这个模型中,我们使用两个GCN层和一个全连接层。我们首先定义一个输入层,然后将其传递给第一个GCN层。接下来,我们将第一个GCN层的输出传递给第二个GCN层,并将其输出传递给全连接层。在调用中,我们将输入传递给输入层,并将其输出传递给第一个GCN层,然后将其输出传递给第二个GCN层,并将其输出传递给全连接层。 最后,我们定义一些示例数据并运行模型: ```python # Example adjacency matrix and node features adj_matrix = np.array([[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]) features = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 1]]) # Create graph embedding model model = GraphEmbedding(input_dim=features.shape[1], hidden_dim=16, output_dim=8) # Compile model model.compile(optimizer='adam', loss='categorical_crossentropy') # Train model model.fit(features, labels, epochs=10, batch_size=1) ``` 这个例子中的邻接矩阵和节点特征表示了一个四个节点的简单无向图。我们使用16个隐藏层和8个输出维度来嵌入这个图。我们使用交叉熵损失函数来训练模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值