随机过程及应用学习笔记(一)概率论(概要)

概率是随机的基础,在【概率论(概要)】这个部分中仅记录学习随机过程及应用的基本定义和结果。

前言

首先,概率论研究的基础是概率空间。概率空间由一个样本空间和一个概率测度组成,样本空间包含了所有可能的结果, 而概率测度则描述了每个结果发生的可能性大小。研究者通过定义适当的概率测度,可以更准确地描述各种随机现象的发生概率。  


 一、概率空间 (Ω,F,P)

Sample space 样本空间:随机试验的所有可能结果构成的集合称为样本空间,记为 Ω。(注:每个结果需要互斥,所有可能结果必须被穷举)

Set of events 事件集合,是Ω的一些子集构成的集合,记为 F,并且它需要满足以下三点特性(也就是必须是δ-field)

Probability measure 概率测度(或概率),描述一次随机试验中被包含在F 中的所有事件的可能性,记为P

  • 样本点(Sample point):随机试验E的每一个最简单的试验结果,记为\omega
  • 样本空间( Sample space):全体样本点构成的集合,称为样本空间Ω
  • 事件(Event):
  1. 样本空间的子集组成的集类F,称为随机事件体(域)。
  2. 随机事件体F的任意元素A称为随机事件。
  • 样本空间o和F的二元体(Ω,F)称为可测空间。
  • 概率(Probability):每个事件一个可能性的度量值。

1、随机试验

定义:如果一个实验E,满足下列条件:    

  • 在相同的条件下可以重复进行;    
  • 每次试验的结果不止一个,并且能事先明确试验的所有结果;    
  • 一次试验结束之前,不能确定哪一个结果会出现。    

称此试验为随机试验。 随机试验(Experiment):结果无法预先确定的试验。 随机试验的结果,称为事件。

2、集论初步

  • 在概率论中,事件和事件的集合起主要作用。
  • 事件的数学理论和集论有密切关系,用集论描述随机过程的事件。

把为了某种目的而研究的对象全体称为集合,简称为集。有某些特定性质的对象的全体,每一个属于这种集的对象,称为集元素。集合用大写字母A、B、C、…表示,元素用小写字母a、b、c、e、w、…表示,一些集组成的集叫类,我们用草写字母表示。

  • 不包含任何元素的集合称为空集\varnothing
  • 包含所研究问题的全体对象,即:包含所考虑的所有集的所有元素的“最大”集合,称为空间Ω

集合的运算:

3、样本空间、随机事件体

随机试验E的每一个最简单的试验结果,称为样本点,记为\omega。全体样本点构成的集合,称为样本空间,记为Ω。

集合论和概率论的专业术语对应关系如下表所示:

4、概率与概率空间

概率的性质与基本公式:

(6)连续性

5、条件概率

6、乘法公式事件的独立性

随机事件的独立性:

7、全概率公式与贝叶斯公式

二、随机变量及其分布

1、随机变量

2、分布函数

3、离散型随机变量及其分布律

4、连续型随机变量

5、常见的随机变量及其分布

两点分布

两点分布(也称为伯努利分布)是概率论中一种离散概率分布,描述了一个随机变量取两个可能值之一的情况。这两个可能的取值通常被标记为0和1,或者成功和失败。该分布得名的原因是它只涉及到两个点。

两点分布的概率质量函数(PMF)可以表示为:

其中,p 是成功的概率,1−p 是失败的概率。这样的分布通常用于描述一次伯努利试验的结果,其中只有两个可能的结果。

两点分布的期望值(均值)和方差分别为:

  • E(X)=p
  • Var(X)=p(1−p)

其中,X 是随机变量,p 是成功的概率。

二项分布

二项分布(Binomial Distribution)是概率论中一种离散概率分布,描述了在进行一系列独立的伯努利试验中成功的次数。每次试验只有两种可能的结果,通常称为成功(success)和失败(failure)。

假设进行了 n 次独立的伯努利试验,每次试验成功的概率为 p,失败的概率为 1−p。随机变量 �X 表示成功的次数,则 X 的概率质量函数(Probability Mass Function,PMF)为:

其中,(kn​) 表示组合数,即从 n 次试验中选择 k 次成功的组合数。

二项分布的期望值(均值)和方差分别为:

E(X)=np

Var(X)=np(1−p)

这表明在进行多次独立的伯努利试验时,成功的次数的期望值等于每次试验成功的概率乘以试验次数,方差等于期望值乘以失败的概率。

二项分布在概率论和统计学中广泛应用,特别是在描述二元事件的发生次数的情况下,如硬币抛掷、医学研究中的治疗效果、制造业的质检等。

均匀分布

在二维均匀分布中,随机变量(X,Y) 在一个矩形区域内均匀分布。概率密度函数为:

其中,区域的面积决定了概率密度的大小。

均匀分布具有简单且直观的性质,适用于许多实际问题的建模,例如在一定范围内的随机实验或随机变量。均匀分布在统计学、概率论、模拟和随机过程等领域中经常被使用。

高斯分布

高斯分布,也被称为正态分布(Normal Distribution),是概率论和统计学中最为重要的分布之一。它具有许多重要的性质,对于自然界中的许多现象和实验结果都有很好的描述。

高斯分布的概率密度函数(Probability Density Function,PDF)为:

其中,x 是随机变量的取值,μ 是均值(期望值),σ 是标准差。这个分布的图像呈钟形,关于均值对称。

高斯分布的期望值(均值)为 μ,方差为 2σ2。标准差 σ 控制了曲线的宽度,曲线越宽表示数据越分散。

高斯分布在自然界中的许多现象中都能够找到,比如测量误差、身高分布、温度分布等。中心极限定理表明,当独立随机变量的和足够多时,它们的分布趋向于高斯分布。这使得高斯分布在统计学和概率论中被广泛应用,特别是在推断统计、假设检验和机器学习等领域。

三、随机变量的数字特征

1、数字期望

2、方差

3、矩、协方差

4、随机变量数字特征的性质

四、条件数学期望

五、特征函数

1、定义与性质

一般而言,对于随机变量X的分布,大家习惯用概率密度函数来描述,虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。

  • 特征函数的本质是概率密度函数的泰勒展开
  • 每一个级数表示原始概率密度函数的一个特征
  • 如果两个分布的所有特征都相同,那我们就认为这是两个相同的分布
  • 矩是描述概率分布的重要特征,期望、方差等概念都是矩的特殊形态

随机变量X的特征函数:

其中,i是虚数单位,t是任意实数,E[⋅]表示期望。

性质:

  1. 存在性: 对于任何随机变量X,它的特征函数总是存在的。

  2. 唯一性: 不同的随机变量可能具有相同的特征函数,但如果两个随机变量的特征函数在某个范围内相等,则它们在分布上相同。

  3. 特征函数与分布的关系: 如果两个随机变量具有相同的特征函数,则它们具有相同的分布。

  4. 特征函数的对称性: 如果X是一个实随机变量,其特征函数为φ(t),则对于任意实数t,有 ϕ(−t)=ϕ(t)​,其中ϕ(t)​表示φ(t)的共轭复数。

  5. 特征函数的加法性: 如果X和Y是相互独立的随机变量,它们的特征函数分别为φX(t)和φY(t),那么它们的和Z = X + Y 的特征函数为 ϕZ​(t)=ϕX​(t)⋅ϕY​(t)。

  6. 中心极限定理: 如果X1, X2, ..., Xn是独立同分布的随机变量,具有相同的期望μ和方差σ^2,则它们的和标准化后的特征函数在n趋于无穷大时趋近于正态分布的特征函数。

特征函数在概率论和统计学中有广泛的应用,它提供了一种便捷的方式来研究随机变量的性质和相互关系。

针对概率密度函数为f ( x )的连续随机变量X,特征函数写作:

2、多维随机变量的特征函数

  1. 存在性: 对于任何多维随机变量 X,其特征函数总是存在的。

  2. 唯一性: 不同的随机变量可能具有相同的特征函数,但如果两个随机变量的特征函数在某个范围内相等,则它们在分布上相同。

  3. 特征函数与分布的关系: 如果两个多维随机变量具有相同的特征函数,则它们具有相同的分布。

  4. 特征函数的对称性: 如果多维随机变量 X 的特征函数为ϕX​(t),则对于任意实数向量 t,有 ϕX​(−t)=ϕX​(t)​,其中 ϕX​(t)​ 表示特征函数的共轭复数。

  5. 多维随机变量的独立性: 如果多维随机变量 X 和 Y 是相互独立的,它们的特征函数分别为 ϕX​(t) 和 ϕY​(t),那么它们的组合 Z=X+Y 的特征函数为 ϕZ​(t)=ϕX​(t)⋅ϕY​(t)。

六、收敛性与极限定理

1、收敛性

2、大数定理

3、中心极限定理


总结

以上就是今天要讲的内容,仅仅简单介绍了一些概率论的基本概念。

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 概率论是研究随机事件及其规律性的一门数学分支。它主要研究随机现象的数学模型和运算规则,以及随机事件的发生概率和统计规律。概率论通过引入概率的概念,可以对多种随机现象进行描述、分析和预测。 随机过程概率论中最重要的概念之一,它是随机事件随时间变化的一种数学模型。随机过程可以用来描述一系列随机事件的演变过程,其中的每个随机事件都与一个特定的时间相关联。它是一个以时间为自变量的随机函数。 概率密度函数(Probability Density Function, PDF)是描述连续型随机变量概率分布的函数。对于一个连续型随机变量X,其概率密度函数f(x)可以表示为在某个点x附近的概率密度值。由于概率密度函数表示的是一个概率分布,所以其满足以下两个性质:非负性(即f(x)≥0)和归一性(即整个分布的面积为1)。 通过概率密度函数,我们可以得到随机变量的各种统计特性,如均值、方差等。同时,概率密度函数也允许我们计算特定区间内的概率,因为概率可以看作是概率密度函数下方某一区间的面积。 概率论随机过程和概率密度函数在许多领域中都有重要应用。在金融领域,概率论可以用来分析股票价格的随机波动,以及衡量投资组合的风险。在通信领域,随机过程被用于建模信号传输中的噪声和干扰。在工程领域,概率密度函数可以用来分析制造过程中的变异和不确定性。总之,概率论随机过程和概率密度函数是现代科学和工程中不可或缺的基本工具。 ### 回答2: 概率论是数学中的一个分支,研究的是随机现象的规律及其数学模型。它采用概率作为研究对象的一种数学统计工具,通过分析和描述事物的可能性,揭示出事物发生的规律和规律的数量关系。概率论可以被应用于各种领域,如物理学、生物学、统计学等。 随机过程概率论中的一个重要概念,指的是一类随机变量的集合,其定义是在某个随机试验中,按照一定的规则,随机变量的取值随时间变化。随机过程可以用来描述随机现象的动态发展过程。例如,可以用随机过程来描述一个赌徒在一段时间内的输赢情况,或者用随机过程来描述一个股票价格的波动。 概率密度函数(Probability Density Function,PDF)是概率论中用来描述连续型随机变量的概率分布的函数。它在数轴上的取值表示了随机变量落在该区间内的概率。对于一个连续型随机变量,其概率密度函数表示了该随机变量的取值在每个点上的概率密度值。通过对概率密度函数进行积分,可以得到随机变量在某个区间内的概率。 概率密度函数的性质包括非负性、归一化性和可积性。非负性指的是概率密度函数在所有取值点上都是非负数;归一化性指的是概率密度函数在整个定义域上的积分等于1;可积性指的是概率密度函数在整个定义域上是可积的。 概率密度函数在概率论和统计学中有广泛的应用。通过分析概率密度函数的形状和参数,可以推断随机变量的性质,如均值、方差等。概率密度函数也可以用来计算随机变量的分位数,进而进行可靠性分析和风险评估。此外,概率密度函数还可以对随机变量之间的相关性进行分析,从而推断它们之间的关系和相互影响的程度。 总之,概率论研究的是随机现象的规律及其数学模型,随机过程概率论中的一个重要概念,用来描述随机现象的动态发展过程。而概率密度函数则是概率论中用来描述连续型随机变量的概率分布的函数,通过分析概率密度函数可以推断随机变量的特性并进行相关分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值